#### LATE PALEOZOIC ICE AGE (LPIA)

## Gondwana glaciations and their proxies in the US Cordillera

#### **LPIA**

- 1. When were the glaciations?
- What are glacial "deposits?"
- 3. Were the glaciations episodic?
- 3. How extensive (areally) were the glaciations?
- 4. How do we date the glaciations?

#### **Proxy beds**

- 1. Sappington Fm., Montana Devonian/Carboniferous boundary, biostratigraphy and sequences
- 2. Foreland, Idaho Late Mississippian, distinguishing tectonic from eustatic events
- 3. Copacabana Formation, Bolivia Pennsylvanian records of glacigenic dust

#### **Late Paleozoic Glaciations**

Famennian – Tournaisian Visean(?) – Namurian Westphalian(?) Sakmarian - Artinskian

**TRIGGERS** 

COEVAL IMPACTS

TRANSITIONS FROM GLACIATION(S) POST-GLACIATION SCENARIOS (PERMIAN)

What started Devonian events?

Coeval Extinctions?

Assembly of all glaciations'evidence And coverage

Carbonate factory?

Hiatus and erosion (i.e., sealevels)?

Biotic shifts?

Evaporites, black shales, sands, and other deposits

Greenhouse?

Isotopic changes?

Sealevels?

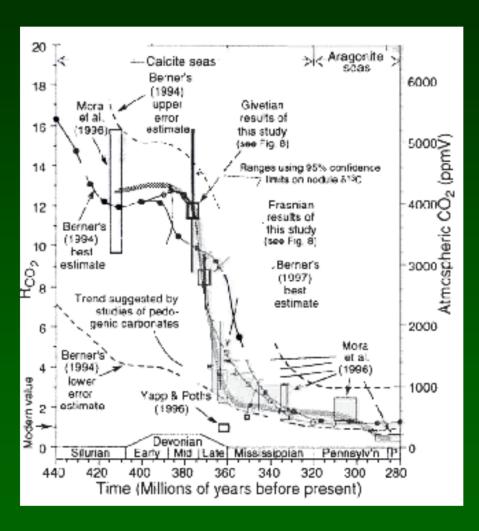
Carbonates?

Climate changes:

Why?

Pangaea-related?

Isotopes


## TRIGGER? Late Devonian CO<sub>2</sub> drop

- Orogenies add nutrients to marine ecosystem
- Plants reduce carbon dioxide and enhance weathering (= more nutrients)
- Seas become hyperproductive
- Eutrophication (e.g., Woodford, Bakken shales)

# A PARADIGM CHANGE: Late Devonian onset of Gondwana glaciation and its proxies

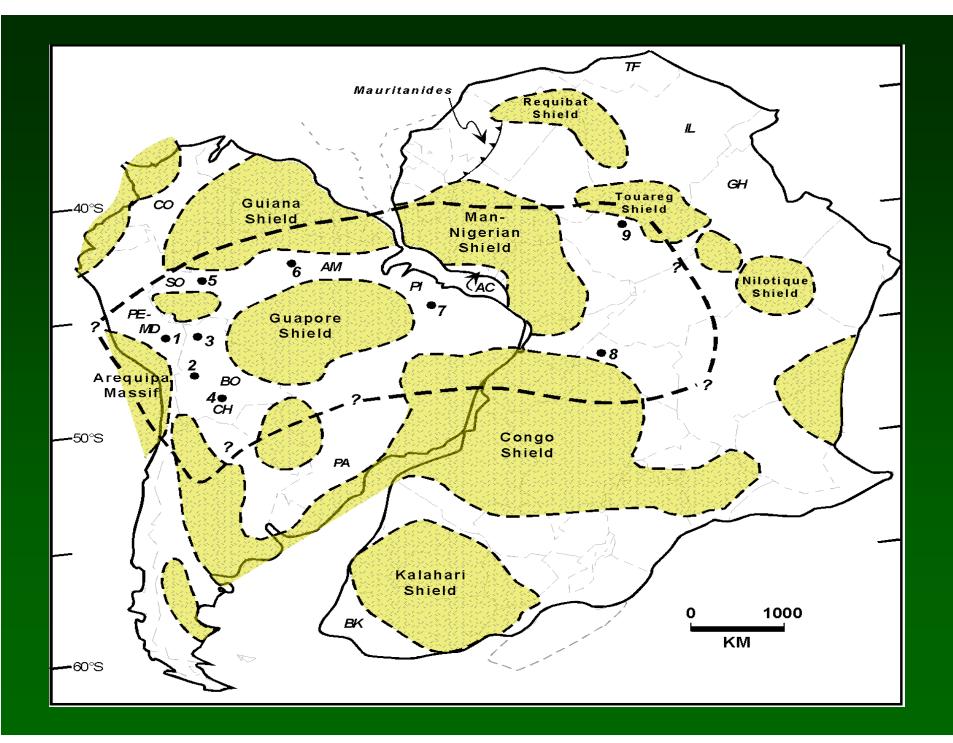
P.E. Isaacson, G.W. Grader, M. di Pasquo University of Idaho, CONICET, Universidad Nacional de Entre Rios, Argentina

#### Late Devonian carbon dioxide drop



### Gondwana Glaciation

- Brasil is possible center (Parnaíba, Amazonas, Solimöes basins – more?)
- Andes: Bolivia, Perú, probably Argentina
- Africa: Central African Republic, Niger, South Africa?
- Laurentia




Parnaíba Basin Devonian pavement Courtesy of M. Caputo

## Glacial clasts: Cumaná Fm., Bolivia

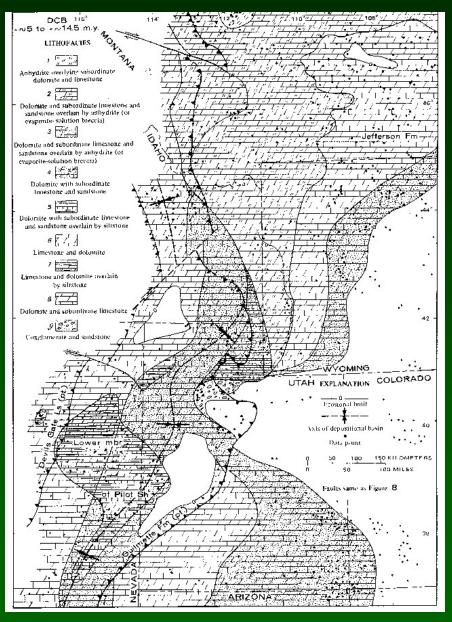






#### Ice Volume

- Glaciated area = 1.6 x 10<sup>6</sup> km<sup>2</sup> minimum
- With South Africa, northern Argentina, and more of Arequipa, area increases
- Thickness was variable; average = 500 m?
- The Devonian event, therefore, could significantly lower sea levels (50 m, minumum?) in 4<sup>th</sup> and 5<sup>th</sup> order cycles... beyond biostratigraphic ordering


## Coeval Events = Collateral Damage?

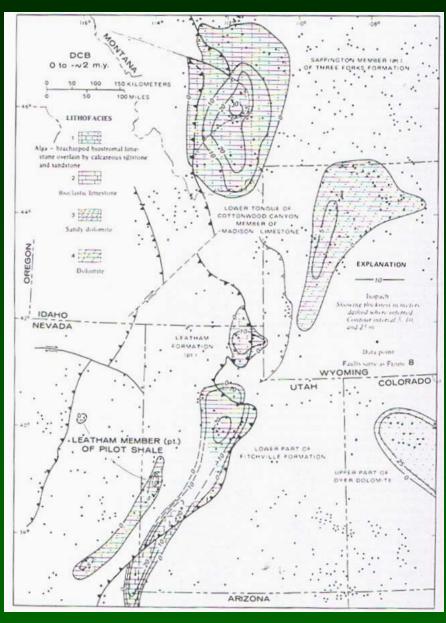

- Worldwide high TOC values in glacial beds, European carbonates, Appalachian black shales, western interior carbonates (eutrophication?)
- Craton sand invading western U.S.A.
- Megabreccias (Idaho and Montana, U.S.A.)
- Evaporites (Montana, U.S.A.)
- Iron oolites (Libya)
- Hiatuses (Western Canada and U.S.A.)

TABLE II

Late Devonian (Famennian) geologic phenomena responding to glacially-induced sealevel drawdown

| Parameter                                                                | Locations                                                                                         | Depositional<br>Settings                                                                                    | References                                                                                               |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Breccias, Karst                                                          | Nevada(?), Idaho, Montana<br>Moravia, Czech Republic<br>Xiangzhou, South China                    | Phreatic zone weathering of Frasnian-age carbonate banks, Subaerial exposure                                | Mylroie and Carew (1995)<br>Grader (1998)<br>Blount (1986), M'Gonigle (1986)<br>Kalvoda and Kukal (1987) |
| Craton sand                                                              | Bierdneau Fm., Idaho<br>Jefferson Fm., Idaho                                                      | Subaerial exposure                                                                                          | Beus (1968), Grader (1998)<br>Isaacson et al. (1999)                                                     |
| Black Shales,<br>organic<br>enrichment                                   | Chattanooga Shale, U.S.A.<br>Ohio Shale, U.S.A.<br>Exshaw Shale, W. Canada<br>Cumaná Fm., Bolivia | Ocean basin restriction and eutrophication, causing hyperproductivity and abundant phytoplankton deposition | Peterson (1993)<br>Peters et al.(1996)                                                                   |
| Evaporites                                                               | Wabamum Group, Canada<br>Three Forks Shale, Montana<br>Dneiper-Donetz Basin, Belorus              | Ocean basin restriction                                                                                     | Halbertsma (1994)<br>Sandberg (1963)<br>Avkhimovich and Demidenko<br>(1985)                              |
| Lacunae                                                                  | Three Forks Shale, Idaho-<br>Montana<br>Pilot Shale, Nevada<br>Canada                             | Periodic subaerial exposure                                                                                 | Sandberg et al. (1983)<br>Giles and Dickinson (1995)                                                     |
| Other features Iron oolites and forests, Libya Microbial buildups, China |                                                                                                   | Periodic exposure                                                                                           | Van Houten and Karasek (1981)<br>Shen (2003, pers. commun.)                                              |



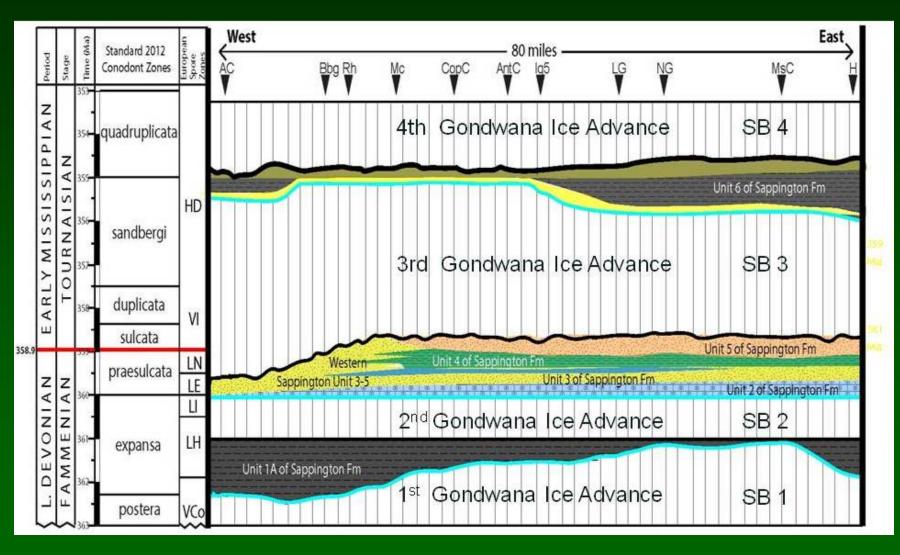


Late Frasnian

Late Famennian

#### Late Devonian Pilot Shale, Nevada

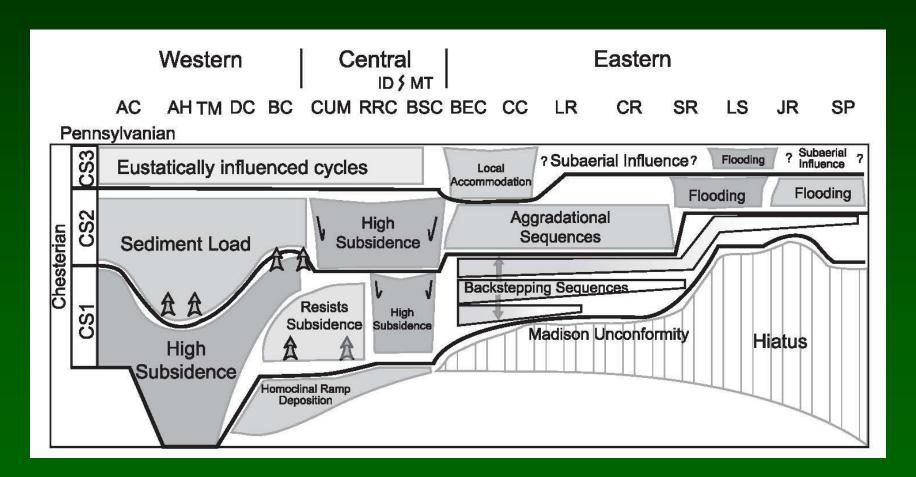



4th order cycles?

### **Proxy Record**

#### \*Presentations, this session

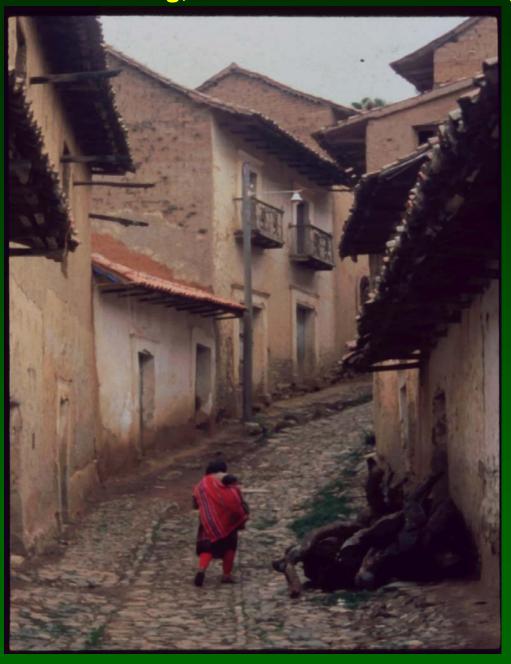
- Sappington Formation, Montana: Devonian-Carboniferous boundary lacunae (*Grader et al., di Pasquop et al., Rice et al.*)\*
- Surrett Canyon and Arco Hills formations, Idaho: Late Mississippian glacioeustatic eustasy overprinting tectonic subsidence (Batt et al., 2008)
- Copacabana carbonates, Bolivia:
   Pennsylvanian glacigenic dust coeval with glacials in southern Bolivia and Argentina
   (Carvajal et all; Schiappa; Anderson-Folnagy et al.)\*


#### Sappington Formation, Montana



Problem of missing conodont zones

#### **Late Mississippian Proxy**


Surrett Canyon and Arco Hills formations, Idaho distinguishing tectonic and eustatic sequences



#### Western European miospore zones. from Caputo et al., 2010 Viséan: Perotrilites tessellatus-Schulzospora campyloptera (TC) to Rainstrickia nigra-Triquitrites marginatus (NM). Tournaisian: Spelaeotriletes balteatus-Rugospora polyptycha (BP) to Spelaeotriletes pretiosus-Raistrickia clavata (PC). Retispora lepidophyta-Indotriradites explanatus (LE) to Retispora lepidophyta-Verrucosisporites nitidus (LN). Teichertospora torquata-Auroraspora pseudocrista (TP)(~"IV" / "V" Transit.

| I. |                          |                             | NC                                               |                |
|----|--------------------------|-----------------------------|--------------------------------------------------|----------------|
|    | S                        | N                           | VE                                               |                |
|    | EARLY CAR-<br>BONIFEROUS | VISÉAN                      | $\overline{\mathrm{NM}}$                         | GLACIATION     |
|    | A 0                      | SÉ                          | TC                                               | GLACIATION     |
|    |                          | $\overline{\mathbf{I}}$     | TS                                               |                |
|    | Z Z                      |                             | $\frac{PU}{CM}$                                  |                |
|    |                          | $ \mathbf{A}^{\mathbf{N}} $ | PC                                               | OT A CTATION   |
|    |                          | URN,<br>SIAN                | BP                                               | GLACIATION     |
|    | 3.A.                     | FOURNAI-<br>SIAN            | 臦                                                |                |
|    |                          | I                           | VI                                               |                |
|    | <b>⊢</b>                 | <b>-</b>                    | LN                                               | GLACIATION     |
|    |                          | A                           | LE                                               | GLATCHAITOIT   |
|    | <b>TE DEVONIAN</b>       | FAMENNIAN                   | LL                                               |                |
|    |                          | Z                           | $\overline{VH}$                                  |                |
|    |                          | $\mathbb{E}$                | VCo                                              |                |
|    | 7(                       | $ \mathbf{Z} $              | CE                                               |                |
|    | ( <del>-</del> )         | FA                          | GF<br>GH                                         |                |
|    | )                        |                             | "V"                                              |                |
|    |                          | 7                           | <del>-                                    </del> | GLACIATION (?) |
|    | $\Xi$                    | A                           | "IV"                                             |                |
|    |                          | IN                          | 77.5                                             |                |
|    | Ψ,                       | S                           | BM                                               |                |
|    |                          | FRASNIAN                    | ВJ                                               |                |
|    |                          | FF                          |                                                  |                |
| [  | 8                        |                             | TCo                                              |                |
| 1  |                          |                             |                                                  |                |

#### "I know one thing, and that is I know nothing."



Socrates, ca 410 BC