

STEWARDSHIP
SERVICE

Rocky Mountain Section 68th Annual Meeting

Epithermal Deposits Related to Caldera Development in Newly-Identified Graben, Oaxaca, Mexico

BARRY D. DEVLIN Vice President, Exploration

GOLD RESOURCE CORPORATION NYSE MKT: GORO

May 18, 2016

Mexico Epithermal Deposits (Camprubi & Albinson, 2007)

Mexico Geology "Sierra Madre Del Sur"

Seismotectonics of Southern Mexico

- Tertiary volcanism & ore deposits are superimposed on composite thrustbound basement terranes associated with evolution of NW-trending oblique right-lateral convergent Cocos-North American plate margin.
- More than 8,000 earthquakes with magnitude greater than 4.0 in 40 years.

-100

15

Seismicity from 1973 to present USGS National Earthquake Information Center (NEIC) database)

Seismic Hazard Study – El Aguila Project by Vector Engineering Inc. (after Kostoglodov & Ponce, 1994)

Tectonostratigraphic Terranes of Oaxaca

- Cuicateco Terrane consisting of Mesozoic volcanosedimentary sequence formed in a submarine volcanic arc with a complex metamorphic basement, and
- Zapoteco terrane consisting of Proterozoic continental crust of mainly crystalline basement rocks overlain nonconformably by rare Paleozoic strata.

Oaxaca Geology -Lithostratigraphy

- Tertiary volcanics dominated by rhyolitic to andesitic tuffs, minor flows, agglomerates & ignimbrites
- Generally accepted potassium-argon dates are Miocene
- Primarily underlain by Cretaceous limestones, sandstones and siltstones

Miocene "Taviche" Graben

Calderas & Flow Domes (David M. Jones, 2005)

- Large-scale calderas with medium- to high-level intrusions including andesitic to rhyodacitic flow domes overlain by thick ignimbrite units are associated with epithermal deposits.
- Mineralization is intimately related to intra-graben regional strike-slip shearing & caldera magmatism.
- There is also a particularly close association between dome margins, dikes, and epithermal vein mineralization.

David Jones explaining caldera-setting with dome feature in background.

Contorted flow banding & sheeting at margin of rhyodacite dome.

Sub-horizontal "mushroom- lobe" flow banding in felsite dike.

Strike-Slip Shearing & Magmatism

- Local magmatism begins with Caldera I formation denoted by deposition of densely welded intracaldera tuff
- Caldera I formation followed by resurgent dome with small-volume pyroclastics erupted onto a paleosurface
- Caldera II development involves late piston-like exaggerated uplift of Cretaceous basement & deposition of pyroclastic apron deposits around and along margins of this uplift
 - N70W Regional Structure
 - **Piston-Like Plug**
 - **Resurgent Domes**
 - **Nested Calderas**

Paleosurface Deposits

Highest priority exploration targets lie along & below the paleosurface where it intersects annular structures related to resurgence. Important paleosurface indicators:

- <u>Travertine</u> deposited from carbonate-bearing water and indicative of a still active hydrothermal system (Above & upper right); At Arista, carbonated subsurface water bubbling with CO₂ gas and temperatures 42 – 43 degrees centigrade at 400 m depth
- Paleosurface fossils like this bark and twig impression (Lower right)

Arista Deposit

- > Arista deposit is main epithermal vein system at Aguila mine
- Drilling has defined vein system to a depth of more than 600 meters
- Low & Intermediate sulfidation systems 400 to 1,000 m below paleosurfaces
- Arista deposit is a intermediate sulfidation epithermal vein system

Arista Vein

Polymetallic mineralization mainly comprises:

pyrite sphalerite galena chalcopyrite argentite/acanthite pyrargyrite tetrahedritetennanite arsenopyrite stibnite

Fluid Inclusions (quartz): 250 - 270° C <2% wt% NaCl

Skarn Association (Jeffrey A. Jaacks, 2006)

- Before discovery of Arista, studies already showed that precious & base metals introduced in 2 separate events: early skarn followed by epithermal
- Geochemical sampling studies indicated 2 different metal associations:
 - <u>Au+Ag+As+Sb+Hg+Cu+Pb+Zn+Mo(+Bi+W)</u>: representing Au-Ag-Base Metal veins developed in skarn setting peripheral to an intrusive, and
 - <u>Au+Ag+As+Sb+Hg</u>: a more limited element suite, more typical of a volcanic hosted epithermal Au-Ag vein system

Skarn Alteration (Lawrence D. Meinert, 2010)

Multiple generations of quartz-galena and tan bustamite (CaMn²⁺Si₂O₆^[1])

Banded green pyroxene Dolo sphalerite-galena-chalcopyrite
(Sphalerite Fluid Inclusions: 260 - 300° C; 6 - 16% wt% NaCl)

Quartz vein with white fibrous wollastonite

Dolomitic limestone cut by calcite-talc-tremolite veins

Magnetics & Intrusives

Interpretation of magnetic data by geophysicist, Bob Ellis, using standard digital image processing techniques & inversion modeling, helped extend known mineralized structures & identify areas of potential magnetite destructive alteration & skarn mineralization

3D Magnetics & Geology

- Integrating 3D modeling with geology has been helpful in targeting at the mine scale & provides better understanding of the regional geology
- Mag low associated with Arista deposit & mag highs mixed intrusives & skarn

Exploration Model (Corbett, 2006)

- Extension-related pull-apart basin model for proposed "Taviche Graben" and related veins/skarn
- Controlling strike-slip structure creates pull-apart basin into which were deposited Miocene volcanics with hot spring & sinter deposits & steep, en echelon fissure veins & intrusions/skarn

OAXACA 2010 – 2015 Gold & Silver Production

GOLD (oz)

MINE	2010	2011	2012	2013	2014	2015	TOTALS
AGUILA (Gold Resource)	10,493	21,586	34,417	33,942	35,552	29,644	165,634
SAN JOSE (Fortuna Silver)		4,524	17,918	19,031	33,496	38,526	113,495
TOTALS	10,493	26,110	52,335	52,973	69,048	68,170	279,129

SILVER (oz)

MINE	2010	2011	2012	2013	2014	2015	TOTALS
AGUILA (Gold Resource)	111,316	2,180,309	2,996,743	3,032,841	3,297,204	2,506,000	14,124,413
SAN JOSE (Fortuna Silver)		478,167	1,949,178	2,527,203	4,396,760	4,928,893	14,280,201
TOTALS	111,316	2,658,476	4,945,921	5,560,044	7,693,964	7,434,893	28,404,614

> Increasing reserves at both operations indicate more years of production are ahead