Megafloods, Paleohydrology, and Fluvial Processes on Earth and Beyond: In Recognition of the Scientific Contributions of Victor R. Baker

The Geological Society of America
ROCKY MOUNTAIN Section Meeting
18–19 May 2016
University of Idaho, Moscow, Idaho.
SESSION NO. 17 T1. Megafloods, Paleohydrology, and Fluvial Processes on Earth and Beyond:
In Recognition of the Scientific Contributions of Victor R. Baker

STREAMLINED ISLANDS of MARS

Henrik I. Hargitai;
Virginia Gulick;
Natalie H. Glines

THURSDAY, 19 MAY 2016
17-7 10:20 AM
Navua Geology

- Brown-Yellow: impact materials
- Blue-Pink: volcanic materials
- Green: fills
- Blue: channel, paleolake basin (nonimpact)
Ages

- Cratered highlands 3.8-4.1 Ga
- Ejecta 3.9-0.3
- Lava flows 3.8-3.3/0.9
- Channel surfaces 3.7-0.1
 - Channel reaches show different ages
 - Multiple events, some channels abandoned/resurfaced
- Fans 3.6/0.6
- Terminal Deposits 3.2-0.4
- Mound fields 2.5
 - Volcanic activity: 3.8-3.3 (-1.3 in basin)
 - Channel activity: 3.7-0.1
 - Not necessarily fluvial!
 - But lava and ejecta surfaces show no resurfacing after 0.9
 - Youngest resurfacing events are limited to channels: Fluvial, glacial action, wind funnel effect
Flat floored channels

- Flood-eroded channels in lava flows and impact ejecta
- 200k-500k m³/s (not megaflood but catastrophic flood)
- 30-50 km/h
- 1-2 km width
- 20-40 m depth
- Formation: 3.4-3.7 Ga (Late Hesperian, volcanically active period)
- Hadriacus Mons formed in this period
Discharge rates

\[Q = u d w \]

where \(u \) is the velocity of water flow in the channel, m/s
\(d \) is water depth, m
\(w \) is channel width, m

and

\[u = \left[\frac{8 d g \sin \alpha}{f} \right]^{1/2} \]

where \(g \) is gravitational acceleration (3.72 m/s\(^2\))
\(\alpha \) is channel bed slope angle, degree
\(f \) is the dimensionless Darcy-Weisbach bed friction factor, calculated for boulder and gravel beds.

Mississippi: 8,000 - 31,000 m\(^3\)/s

Original topography sharply cut and eroded

Velocities 3-50 km/h
Interior channels

- Channels used repeatedly several times, the most recently by interior channels
- (smaller scale, fluvial flows)
- 10-20,000 m³/s
- >3 km/h
- Resurfacing episodes throughout the Amazonian (2.2 to 0.2 Ga) with formation ages up to 0.2 Ga (likely new, glacial deposit)
- Latest fluvial features are these channels but they are not dated. Similar to Fresh Shallow Valleys commonly found on Mars.
Valley networks in the highlands cut into, transport and alter Noachian regolith. Flood/outflow channels cut into, transport and alter Hesperian basalt lavas. Interior channels transported materials already altered by the flood channels.
Longitudinal profiles

Navua Valles: Longitudinal Profile and Reach Types

Linar profile = immature system
Source of water

- Green: source valley reaches (mountaintops)
- Yellow: knobby terrain (pingos?)
- Source is likely snowmelt at high elevations related to volcanic activity
- Groundwater present for lower reaches
- Similar setting is common on Mars but not close to volcanic centers
- Precipitation, volcanism and groundwater and altered materials likely formed a hydrothermal system which may have provided habitable zones. Its materials are preserved in the terminal deposits.
A channel sequence in Navua

- Outflow channels normally have no terminal deposits.
- These channels have several sections with terminal deposit.
Channels / conclusion

- Fluvial and catastrophic-flood (outflow?) channels have:
 - Different origins
 - Different ages
 - Different discharges

- Mars had a large variety of environments that produced fluvial channels
 - They formed throughout Mars history from Noachian to Amazonian times
 - Source was pluvial / snow / runoff, groundwater, subglacial
 - Termini show deposits
 - Some likely co-evolved with lava flows
 - Impact and volcanic materials were altered and reworked several times. The most complex alteration is expected at the interior channels’ deposits, if any.
Bar vs Island - Definitions

- Earth: bar: usually submerged / unvegetated
 island: usually emerged / vegetated
Streamlined erosional islands with lee side depositional extensions (pendant bars)

Bar vs Island: Mars

- No water
- No vegetation

Geological definition:
- Bar: depositional
- Island: erosional bedrock remnant
- Eroded alluvium: mixed
- or ← Composit forms?
Island origins

1. Depositional bars -> fluvial origin, availability of transportable material. – *low height (scales with channel width)*
 - Braided channels
2. Fluvial dunes (smaller, repeated forms) – *(scales with channel depth)*
3. Complex: Dissected alluvium (erosional islands in alluvial plains or channel fill deposit) -> fluvial origin, multiple modes of stream activity (depositional-erosional)
4. Erosional remnants -> no deposition, catastrophic floods, or avulsion – *steep walled, same level as overbank*
 - Anastomosing channels (islands wider than channel width)
5. Composite: Lee deposits / Pendant bar
Linguoid/diagonal deposits in Lethe Valles. Mars and Sabie River, South Africa.

Ref: Balme et al. 2011
(crater cored) island vs. fluvial dunes
Bars or islands?

- Low streamlined hills are classified as depositional bars or dissected alluvium (alluvial plain with interior channels)
Streamlined islands

Typical catastrophically formed Streamlined forms

Simud-Tiu Valles
Streamlined islands

- Teardrop-shaped islands: the blunter ends point upstream and long tails point downstream.

Not here: remnant islands
Fluvial? Aeolian? Sedimentary? Remnant?

Upstream-pointing forms

channel

←islands (pointing downstream)
Yardangs-in-islands?
Generations of island erosion
Generations of channels

younger level

original level

older level
Bars? Fluvial dunes? Aeolian forms?
Kipuka-island?

Channel material is rippled?
Fluvial transverse dunes?
Ripples not fluvial: it occurs on top of layered channel filling material. Indurated aeolian forms?
Enigmatic forms

Sublimation pits (scallops)

Overlapping rings
Questions:

- Are islands different in different channels?
- How can we distinguish bars and islands? (depositional/erosional or submerged/emerged) and fluvial dunes?
- Can islands help determine the origin of the channel?

Lava channel on Venus
More questions?

- hhargitai@gmail.com
- Channel database: planetarydatabase.wordpress.com
this page is intentionally left blank