#### STRIKE-SLIP FAULTS AND FABRIC VARIATION: IMPLICATIONS FOR STRUCTURAL AND TECTONIC DEVELOPMENT, NORTHERN IRON MOUNTAINS, SOUTHWEST VIRGINIA

#### MITCHELL R. SCHARMAN MARSHALL UNIVERSITY





Support from: Marshall University Summer Research Fund

## INTRODUCTION

- Small- to mesoscale strike-slip faults present in Dry Run Gap (DRG)
- Variation in cleavage orientation



#### NORTHERN IRON MOUNTAINS - DRY RUN GAP

Map Modified from Stose and Stose (1957)





### **STRIKE-SLIP FAULTS**



### **STRIKE-SLIP AND NORMAL FAULTS**



## **STRIKE-SLIP AND NORMAL FAULTS**



#### **STRIKE-SLIP AND NORMAL FAULTS**

# **Strike-slip Faults Normal Faults** Fault Planes: n = 16 Fault Planes: n = 9



## **STRIKE-SLIP OVERPRINT**







## STRUCTURAL PROGRESSION IMPLICATIONS

- Cleavage variation during convergence
- Initial N-NNE Sinistral and Dextral faults
- Cut by normal faults ~W-WNW trending
  - Syn-Folding? Orthogonal Flexure?
- Late Strike-slip faults WNW Sinistral and Dextral
  - Syn- to Post-normal fault formation?



#### **Normal Faults**



## **TECTONIC IMPLICATIONS**



## CONCLUSIONS

- Cleavage orientation variation implies progressive structural changes during imbrication
- DRG strike-slip faults indicate a more detailed structural progression
  - Suggest a change in tectonic transport direction
  - ~N-NNE to WNW
  - Possibly accommodating convergence change with salient interaction