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Motivation
» Use geocellular modeling as a tool to filter on ‘big

levers’ that affect operations and production in an
unconventional reservoir

= Petrel is a tool that can integrate huge data sets

» Drilling, completion, geology, and production data

= Can | predict completion trends and issues?

> EIA — average capital Marcellus completion cost ~ S3. 8 million 2015

= Develop a workflow to:

1) Import and integrate all data into a model

.....

2) Provide real-time operational recommendations S
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Reservoir: Marcellus Formation

= 3 stratigraphic sequences

» Each sequence divided into LST,
TST, HST

= ~60’ thick
» Horizontal drilling target 10’
thick interval primarily in S2 TST
* High TOC, low clay
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Field Area

Western WV
» 3 Units, 28 horizontal wells

» 1.5 units completed with slick water plug

and perf stimulation
* Some RCS wells
= Geology
» 4’ reservoir thickening to the west
» Structure: 0.3°SE — Onondaga surface
» Small scale folds, strike-slip fault
» Structural complexity increases west

» 15 day cum production/ft affected by
both thickness and structural complexity
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Geocellular Model
= Why?

» Many initial, broad questions that | couldn’t answer with my model
that lead me to a more specific questions, such as....

» Can | predict completion trends on a

field-scale?
* Answer: Yes!...Let’s take a look at treating
pressures |
» Can | relate stratigraphic interval to
completion trends?
* Answer: Yes!...Let’s take a look at treating
pressures




Model Construction
Fill volumetric grid so it is geologically and

statistically accurate

= Layer model and upscale data

= Distribute rock properties and completion
data throughout volumetric grid

— @Gaussian random function simulation
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Model Results — Treating Pressure

A) S2 HST Treating Pressures B) S2 TST Drilling C) S2 LST Treating
Target Treating Pressures
. Pressure

"b

& \ i
\*\
Distributed \

Dlstnbuted N | <

Distributed
Treating % Treating Treating IOW
Pressures (psi) Pressures (ps:) Pressures (psi)
7 9,000 9,000 9,000

N0 A \ N\
g s ~ 5 N . . b 3
1 6,000 L 6,000
t t O StageinS1
Hall 2

Ritchie Co, WV * Geologic differences between S2 HST, S2 TST, and

0 Normalized GR API 600§ MD

52 H51 S3LST lgamma, TOC S 2 LST
L 6,000 tclay
S2—d e N fgamma, TOC

------------------------ | * Less data in S2 HST (44 stages, 9%) and S2 LST (22
carbonate, density
s1<{ | = | |' stages, 4%)

22 6,000
O Stage in S2 HST

Targe =




Model Results — Treating Pressure

A) S2 HST Treating Pressures B) S2 TST Drilling C) S2 LST Treating
ﬁb Target Treating Pressures
. \ Pressure

Re-perf <35%

Distributed X\
N\

| \\“\
Distributed \

Distributed \
*‘"K Treating
Pressures (psi)

Treating Treating
Pressures (psi) Pressures (pSl)
7 9,000 9,000 N\ \ 9,000
REF % \ $\
v % X > 3
22 6,000 226,000 22 6,000
O Stage in S2 HST t O StageinS1 t

Hall 2 = Similar trends in S2 HST and TST

Ritchie Co, WV . . .
> Normalzed GRAPI _ soo] MD > similar to structure and thickness trends

l |Jf5mT m S2 LST treating pressures more consistent
e gamma, ToC » function of lack of data?

ldensity, clay

carbonate, density » geology of S2 LST stages is more consistent
J » hot spot cuts through entire S1 and into Onondaga

Targe L

Sl—{

Dondaog




Observations and Conclusions |

= Accurate geocellular models with high horizontal well density
can be created in a timely fashion

= Engineers and geologist can be friends ©

= Completion data can be incorporated into and distributed
throughout geocellular model



Observations and Conclusions li

= Treating pressures distribution trends
» Follow geologic structure and thickness trends
» Values and trends appear to vary among stratigraphic sequences
e S2 LST trends different from S2 TST/HST
* Data distribution is skewed among sequences and tracts

» Also populated production, drilling, and other completion data
(proppant, water) into geocellular models

» Highlight localized problem areas consistent with joint orientation

= Geologic models can be used to predict engineering trends
and provide real-time recommendations

» Increase operational efficiency, decrease costs






