Optimizing Marcellus Formation Field Development, Well Performance, and Operations by Integrating Geologic and Engineering Data into a Volumetric Geologic Model

Katie Tamulonis
Allegheny College
Acknowledgements

• Thank you to Noble Energy for the use of this data
Motivation

Use geocellular modeling as a tool to filter on ‘big levers’ that affect operations and production in an unconventional reservoir

- Petrel is a tool that can integrate huge data sets
 - Drilling, completion, geology, and production data
- Can I predict completion trends and issues?
 - EIA – average capital Marcellus completion cost ~ $3.8 million (2015)
- Develop a workflow to:
 1) Import and integrate all data into a model
 2) Provide real-time operational recommendations
Reservoir: Marcellus Formation

- 3 stratigraphic sequences
 - Each sequence divided into LST, TST, HST
- ~60’ thick
 - Horizontal drilling target 10’ thick interval primarily in S2 TST
 - High TOC, low clay
Field Area

- **Western WV**
 - 3 Units, 28 horizontal wells
 - 1.5 units completed with slick water plug and perf stimulation
 - Some RCS wells

- **Geology**
 - 4’ reservoir thickening to the west
 - Structure: 0.3°SE – Onondaga surface
 - Small scale folds, strike-slip fault
 - Structural complexity increases west
 - 15 day cum production/ft affected by both thickness and structural complexity
Geocellular Model

• Why?
 ➢ Many initial, broad questions that I couldn’t answer with my model that lead me to a more specific questions, such as....
 ➢ Can I predict completion trends on a field-scale?
 • Answer: Yes!...Let’s take a look at treating pressures
 ➢ Can I relate stratigraphic interval to completion trends?
 • Answer: Yes!...Let’s take a look at treating pressures
Model Construction

- Fill volumetric grid so it is geologically and statistically accurate
- Layer model and upscale data
- Distribute rock properties and completion data throughout volumetric grid
 - Gaussian random function simulation
Model Results – Treating Pressure

- Geologic differences between S2 HST, S2 TST, and S2 LST
- Less data in S2 HST (44 stages, 9%) and S2 LST (22 stages, 4%)
Model Results – Treating Pressure

- Similar trends in S2 HST and TST
 - similar to structure and thickness trends
- S2 LST treating pressures more consistent
 - function of lack of data?
 - geology of S2 LST stages is more consistent
 - hot spot cuts through entire S1 and into Onondaga
Observations and Conclusions I

- Accurate geocellular models with high horizontal well density can be created in a timely fashion

- Engineers and geologist can be friends 😊

- Completion data can be incorporated into and distributed throughout geocellular model
Observations and Conclusions II

- Treating pressures distribution trends
 - Follow geologic structure and thickness trends
 - Values and trends appear to vary among stratigraphic sequences
 - S2 LST trends different from S2 TST/HST
 - Data distribution is skewed among sequences and tracts
 - Also populated production, drilling, and other completion data (proppant, water) into geocellular models
 - Highlight localized problem areas consistent with joint orientation

- Geologic models can be used to predict engineering trends and provide real-time recommendations
 - Increase operational efficiency, decrease costs
Thank you!