

Introduction and Objectives

<u>Chevron folds are special folding phenomena featuring (Figure 1) :</u>

(1) Long straight limbs

- (2) Narrow and sharp hinges
- (3) Hinge collapse (some folds)

Common hypotheses to form chevron folds:

(1) Material anisotropy:

Effective anisotropic viscosity $N = \mu_1 \alpha_1 + \mu_2 \alpha_2$ $Q = 1/(\mu_1/\alpha_1 + \mu_2/\alpha_2)$ A=N/Q

N: normal stress Q: shear stress A: degree of anisotropy μ: layer's viscosity α : fractional thickness

(2) Flexural-slip:

No viscosity contrast ('effective single layer') Distribution of amount of slip variable Maximum value — Inflection point Zero — Hinge zone

Some sublayers remain welded together Time of slip initiation / occurrence

Figure 1. Multilayer-chevron folds with hinge collapse in the Agios Pavlos Area in Rethymnon, in south central Crete.

Chevron folds: Later stages (Bastida et al., 2007) General buckle folds: Early stages (Damasceno et al., 2017)

Objectives:

Investigate the conditions and folding mechanisms for chevron folds to form. Quantify the slip evolution during chevron folding.

Methodology: 2D Finite Element Analysis

Model Setup:

Material properties:

Model Features:

- 20 sublayers separated by frictional interfaces
- Maxwell viscoelastic rheology
- Gravitational pre-stressing
- Initial hydrostatic pore pressure
- 50% of horizontal shortening applied using strain rate of 10⁻¹⁴ s⁻¹
- Various initial perturbations

Sensitivity analyses:		
Parameter	Values	
Initial perturbation	Sinusoidal, White noise	
Initial perturbation wavelength	$0.1\lambda_D$, $0.5\lambda_D$, $1\lambda_D$	
	$*\lambda_D$ -dominant wavelength	
Friction coefficient	0.2, 0.6	
(µ)		

Properties	Folding layer	Matrix
Specific gravity	2.30	2.30
Viscosity (Pa s)	5×10 ²¹	5×10 ¹⁹
Young's modulus (GPa)	30	3
Poisson's ratio	0.25	0.25
Porosity	0.20	0.20
Permeability (m ²)	5×10 ¹⁰	5×10 ¹⁰
Friction coefficient	0.60	0.60

The Role of Flexural-Slip in the Development of Chevron Folds

Yuxing Wu^{*}, Andreas Eckert, and Xiaolong Liu Department of Geosciences and Geological and Petroleum Engineering, Missouri University of Science and Technology *YW7R9@MST.EDU | (573) 202-4766

coefficient is applied.

Discussion

tion of slip. Slip tendency, Ω , is defined by: $\Omega = \frac{\sigma_n}{\Omega}$ For Ω =1 slip occurs. Hinge collapse shortening Isolated & non-symmetric **Chevron Folds !**

The slip tendency parameter is chosen to indicate the temporal evolu-

σ_n: normal stress; μ: friction coefficient; σ_s : shear stress;

Figure 2. Slip tendency of chevron folding model in Series#2, #3, #4.

- . For all chevron folds models, slip is initiated at the early stages of folding, i.e. ~1% - ~5% of shortening. This is in contrast to field observations of chevron folds (Bastida et al., 2007) where slip is observed during the later stages of folding.
- . The initial perturbation affects slip occurrence:
- For sinusoidal perturbations slip occurs throughout 50% of
- For the white noise perturbations, slip is initiated later and ceases after $\sim 16\%$ of shortening.

Conclusions

. Systematic, symmetric chevron folds are generated by:

- flexural flow folding of anisotropic layers
- . flexural-slip folding with 10% of dominant wavelength

Only flexural flow folding with anisotropic layers produces the hinge collapse in the incompetent layers.

Chevron folds are generated during early stages of slip initiation.

- 2. Non-systematic, isolated chevron folds are generated by:
 - flexural-slip folding using white noise initial perturbations

By reducing the friction coefficient, thinner limbs, sharper inter-limb angles and higher amplitude chevron folds are generated.

Outlook

- . According to Series #4, the relationship between friction coefficient and dominant wavelength needs to be expressed quantitatively.
- 2. Investigate the discrepancy of timing of slip during chevron folding: Early slip observed in this study vs. slip initiated during later stages (Bastida et al., 2007)

References

- 1. Price, N. J. and Cosgrove, J. W. 1990. Analysis of Geological Structures. Cambridge University Press
- 2. Biot. M. A. 1961. Theory of folding of stratified viscoelastic media and its implications in tectonics and orogenesis. Geological Society of American Bulletin **72,** 1595-1620.
- 3. Bastida, F., Aller, J., Toimil, N. C., Lisle, R. J. Bobillo-Ares, N. C. 2007. Some considerations on the kinematics of chevron folds. Journal of Structure Geolo **29**, 1185-1200.

4. Damasceno, D. R., Eckert, A., Liu, X. 2017. Flexural-slip during visco-elastic buckle folding. Journal of Structure Geology **100**, 62-76.