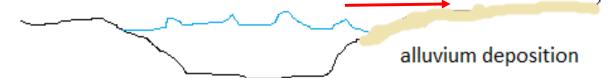

Use of Zircon U-Pb Ages And Bulk Trace Element and Nd-Hf Isotope Compositions to Determine Soil Provenance in a Limestone Terrane, Middle TN, USA


AYERS, John C.¹, WANG, Xiaomei², KATSIAFICAS, Nathan J.¹, NAM, Jeong Hyun, LASLEY, Camille, and LIU, Xiaoming³

- (1) Earth & Environmental Sciences, Vanderbilt University, PMB 351805, 2301 Vanderbilt Pl, Nashville, TN 37235-1805
- (2) China University of Geosciences (Wuhan), Wuhan, China
- (3) Department of Geology, Northwest University, Xi'an, 710069, China, john.c.ayers@vanderbilt.edu

How did soil form in middle TN?

- In-situ chemical weathering of limestone?
- Input of exotic material such as alluvium or loess?
- Identify the source (provenance) of soil-forming material by studying samples of
 - undisturbed soil (high, flat, non-agricultural areas)
 - potential soil sources
- Obtain zircon from the siliciclastic portioin of limestone
- If zircon U-Pb age peaks for soil and bedrock match, then soil formed in-situ
- Zircon U-Pb ages also give info on the provenance and tectonic setting of bedrock sediment sources

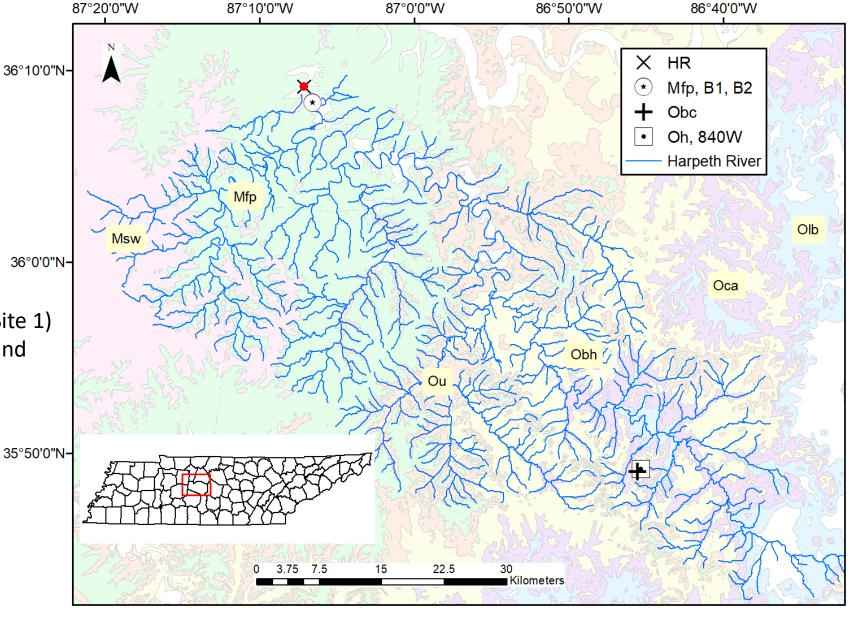
Why zircon U-Pb dating?

- Elemental and isotopic composition and mineralogy not reliable provenance indicators
 - Transport of loess and river alluvium can change composition and mineralogy of deposit
 - Chemical weathering during soil formation changes composition and mineralogy
- Zircon age spectra less likely to be affected by transport or chemical weathering
- Only two previous studies of soil provenance using zircon U-Pb dating; the first was:

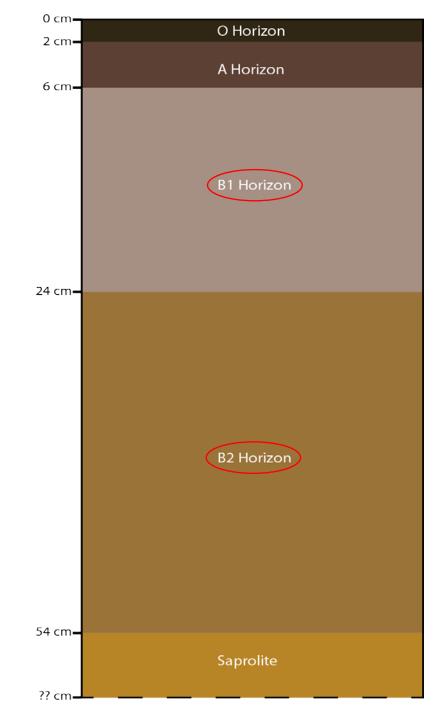
Brimhall, G.H., Lewis, C.J., Compston, W., Williams, I.S., Reinfrank, R.F., 1993. Darwinian zircons as provenance tracers of dust-size exotic components in laterites: mass balance and SHRIMP ion microprobe results, in Soil Micromorphology: Studies in Management and Genesis. Elsevier, pp. 65–81. http://dx.doi.org/10.1016/S0166-2481(08)70398-2

Middle Tennessee Geology

Site 1: Fort Payne Formation


Bigby-Cannon
Limestone
Hermitage
Formation

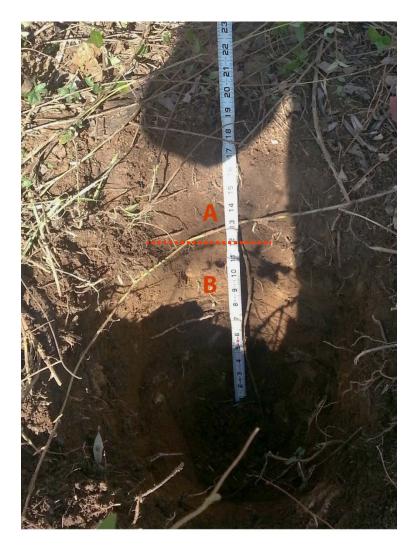
SYSTEM GROUP		FORMATION	ROCK STRATA	AVERAGE THICKNESS fl.	RANGE OF THICKNESS ft.	
Z		STE. GENEVIEVE (MONTEAGLE)		250	180-350	
		ST. LOUIS		180	100-280	
MISSISSIPPIAN		WARSAW		100	40-150	
MISS		FT. PAYNE		250	200-400	
		CHATTANOOGA		20	10-70	
		PEGRAM	BEZILIS	17	0-30	
DEVONIAN	66	CAMDEN		95	0-220	
<u> </u>		FLAT GAP		20	0-55	
- 46		ROSS		45	0-110	
		DECATUR				
SILURIAN	WAYNE	BROWNSPORT		VARIABLE	0-250	
S	-	SEQUATCHIE		55	0-275	
	MAYSVILLE	LEIPERS		70	0-160	
	EDEN	INMAN		50	0-70	
		CATHEYS		130	10-250	
N N	NASHVILLE		BIGBY CANNON		80	50-100
ORDOVICIAN			HERMITAGE		120	70-180
		CARTERS		60	37-93	
			LEBANON		92	74-120
	STONES	RIDLEY		110	110-115	
		PIERCE	第三章	27	23-28	
		FILAGE	TA A A			
		MURFREESBORO	A A A A	70*	200-400	

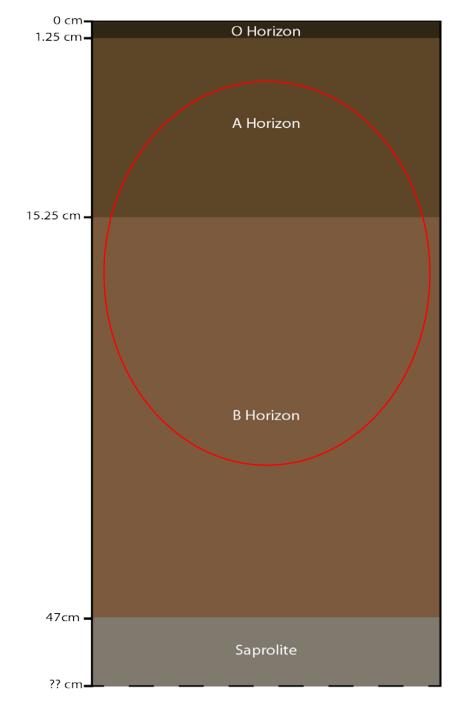

Sample Locations

36°0'0"N-

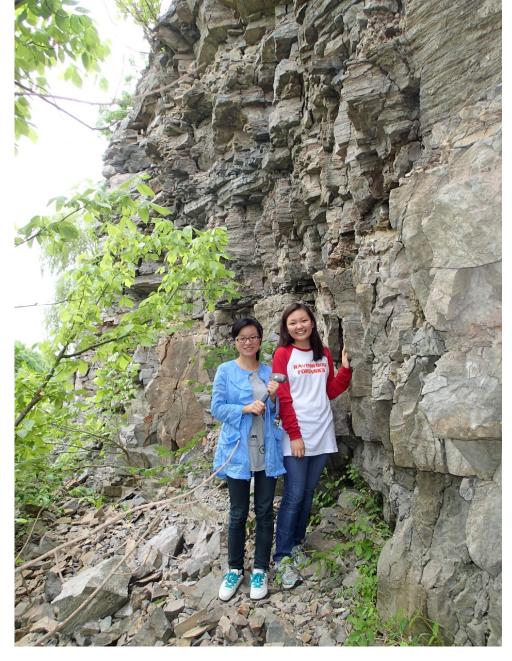
- Mfp = Mississippian Fort Payne (Site 1)
- Obh = Ordovician Bigby Cannon and Hermitage limestones (site 2)

Field Site 1: Harpeth River Terrace: Ultisol




Field Site 2: Highway Outcrop Sampling

 Alfisol soils atop Hermitage Fm. (Oh) Ordovician sandy and argillaceous limestone bedrock


Field Site 2: Sampling of alfisol

Field Site 2: Obc sample

- Bigby-Cannon Limestone (Obc)
 Ordovician phosphatic calcarenite/limestone
- Located 0.15km away from the Hermitage-Alfisol sample site

Xiaomei Wang and Jenna Nam

Loess
outcrop in
Meeman
Shelby Park,
Memphis,
TN

Bulk Soil Properties

Site	Sample	Munsell Color	ρ (g/cm³)	Mean grain size (μm)	Soil Texture (USDA)
1	B1	10YR 6/3	1.5 ± 0.2	43	Silt
1	B2	10YR 5/6	1.5 ± 0.2	19.9	Silt
2	W840	7.5YR 5/4	1.8 ± 0.2	29.3	Silt Loam

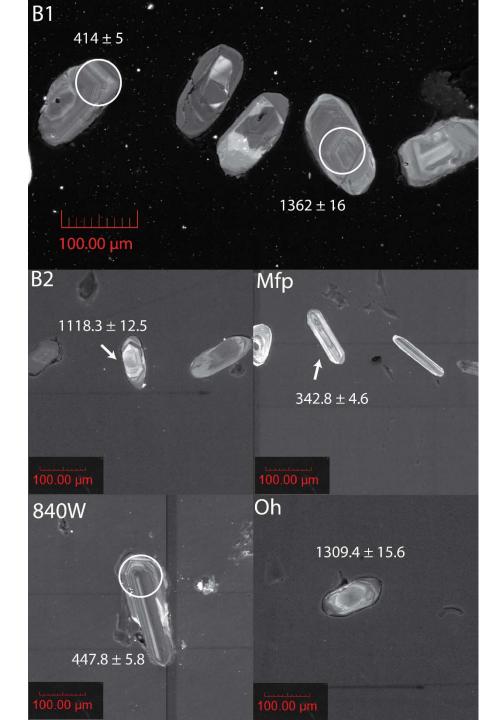
Bulk Properties

Sample	% Insol. Residue	€zr, w	CIA %	% OC
B1	NA	0.81	73	0.69
B2	NA	0.76	84	0.63
W840	NA	0.68	76	1.81
Mfp	99%	NA	78	
Oh	28%	NA	70	
Obc	15%		60	
PL	82%			3.92
RS	99%			0.25
HR	99%			1.02

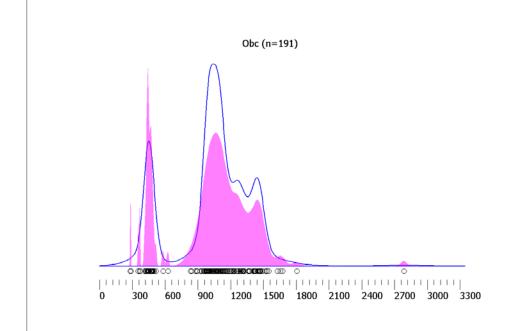
Major element compositions

Original name	Loveland loess	Roxana silt		Harpeth R.	Mfp E	31 E	32 (Oh (Obc \	N840
SiO2	88.92	77.26	69.46	81.87	87.33	86.14	78.12	24.2	5.67	67.32
TiO2	0.32	0.87	0.71	0.99	0.33	1.03	0.99	0.2	0.04	0.64
Al203	5.29	10.05	9.10	7.16	5.13	5.14	8.76	4.02	1.04	6.34
TFe2O3	1.75	3.91	3.21	3.42	2.58	2.36	4.39	1.62	0.49	3.21
MnO	<0.01	0.06	0.08	0.04	<0.01	0.02	0.02	0.16	0.05	0.15
MgO	0.21	0.68	2.83	0.37	0.46	0.24	0.43	1.19	2.68	0.47
CaO	0.48	0.49	3.89	0.39	0.19	0.1	0.09	36.57	48.2	7.7
Na2O	0.04	0.48	1.33	0.32	0.09	0.37	0.27	0.13	0.11	0.25
К2О	0.19	1.66	2.07	1.1	1.05	1.03	0.95	1.19	0.3	1.09
P2O5	0.03	0.06	0.11	0.24	0.05	0.04	0.08	1.69	2.81	5.96
LOI	2.61	4.30	7.17	4.29	2.97	3.31	5.76	29.28	38.31	6.75
TOTAL	99.84	99.81	99.95	100.19	100.18	99.78	99.86	100.25	99.7	99.88

Powder XRD Results

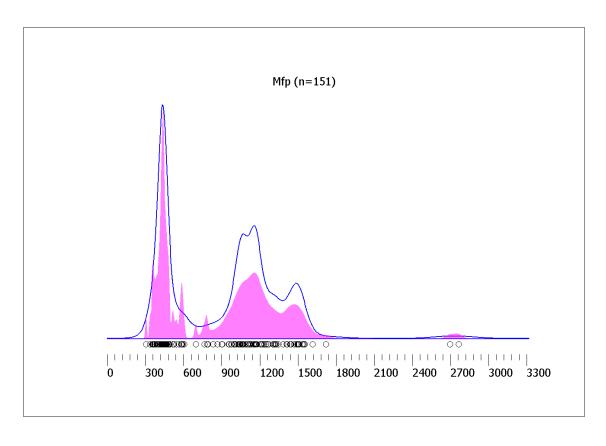

- W840 soil has same minerals as Oh bedrock
- B1 and B2 soils do not have the same minerals as Mfp bedrock

Sample	Quartz	Microcline	Albite	НАр	Chlorite	Amphibole	Sum
B1	95	4	1	0	0	0	100
B2	95	2	1	0	2	0	100
Mfp	100	0	0	0	0	0	100
Obc	38	8	11	35	8	0	100
W840	92	2	2	4	0	0	100
Oh	87	3	1	9	0	0	100
HR	97	2	1	0	0	0	100
PL	90	2	5	0	2	1	100
RS	97	2	1	0	0	0	100
LL	98	0	0	0	2	0	100

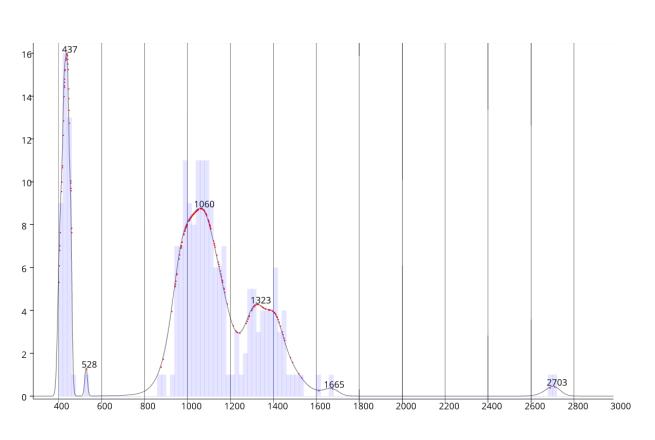

Geochronological Methods

- CL imaging zoning and inclusions
- ThermoFisher iCAP Qc quadrupole ICP-MS with CETAC autosampler and Photon Machine Excite 193nm excimer laser ablation system
- 50 x 50 μm spot size
- Data processed in Glitter, then ET_Redux v. 3.6.25
- Analyses that were > 20% positively or negatively discordant were rejected, where % discordance was calculated as
 - 100-(100*(²⁰⁶Pb/²³⁸U date)/(²⁰⁷Pb/²⁰⁶Pb date))
- Age spectra plotted as kernel density estimates using "DensityPlotter" program of Vermeesch (2012)

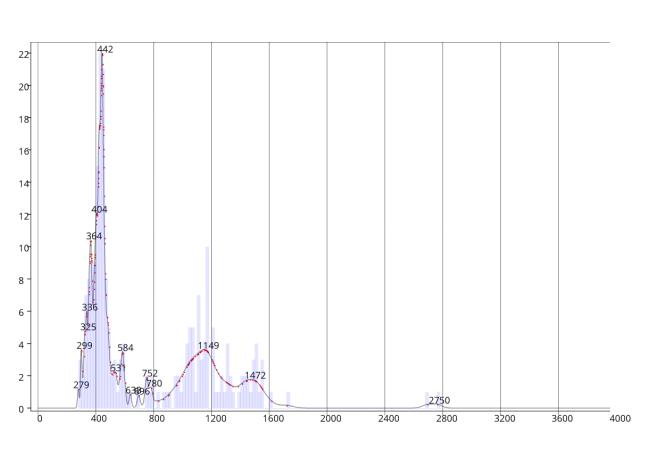
Zircon CL Images



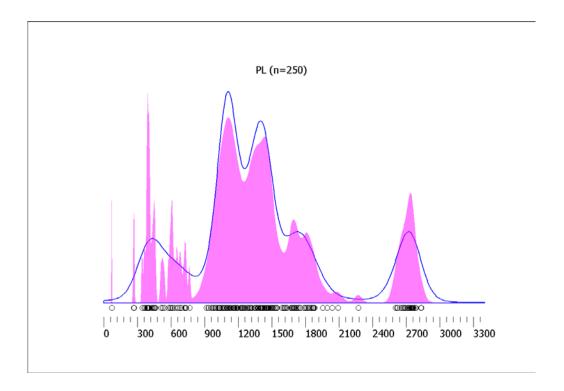
Oh (n=178) 0 300 600 900 1200 1500 1800 2100 2400 2700 3000

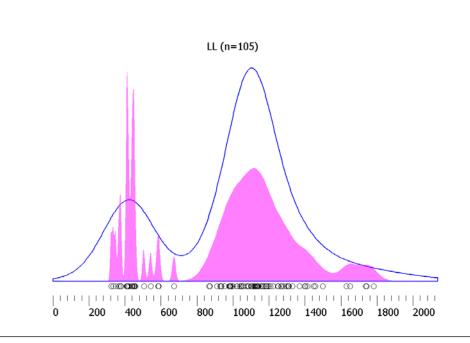

Bedrock Units

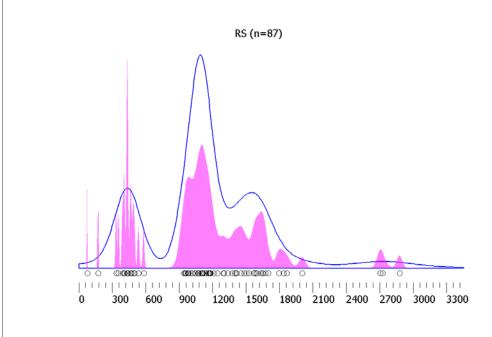
- Taconic orogeny: 430-450 Ma
- 1000-1100 Ma ages consistent with previous ages from southern Appalachians


Pink represent probability density function, blue line represents the kernel density estimate (Vermeesch, 2012).

Tectonic Setting: Oh sediments

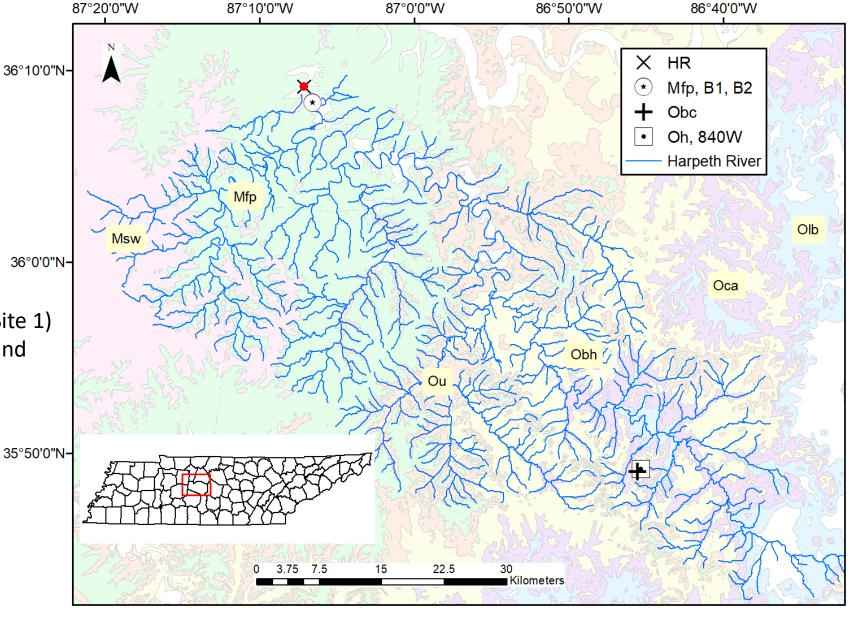

- Oh depositional age 453 Ma (Holland and Patzkowsky, 1997)
- Youngest age peak close to depositional age
- Consistent with a convergent plate margin (supra-subduction zone) setting during the Taconic orogeny.

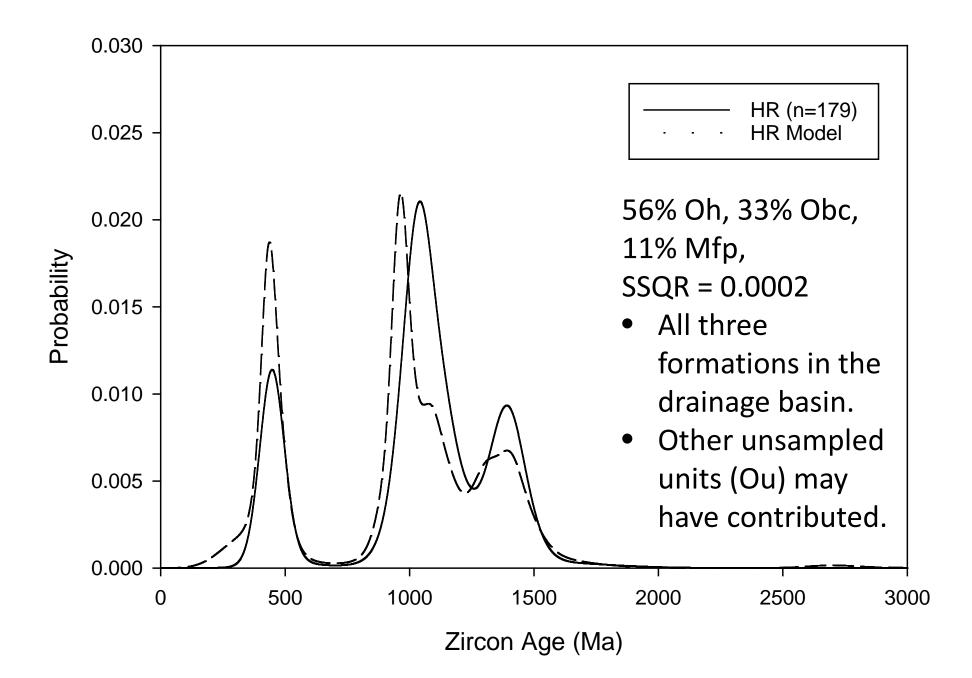

Tectonic Setting: Mfp Sediments



- Mfp is lower Mississippian, so depositional age ~ 350 Ma
- Youngest prominent age peak
 ~440 Ma
- Zircon crystals deposited ~90 Ma after crystallization
- Suggests a collisional setting, specifically the foreland basin of the Appalachians (Cawood et al., 2012).

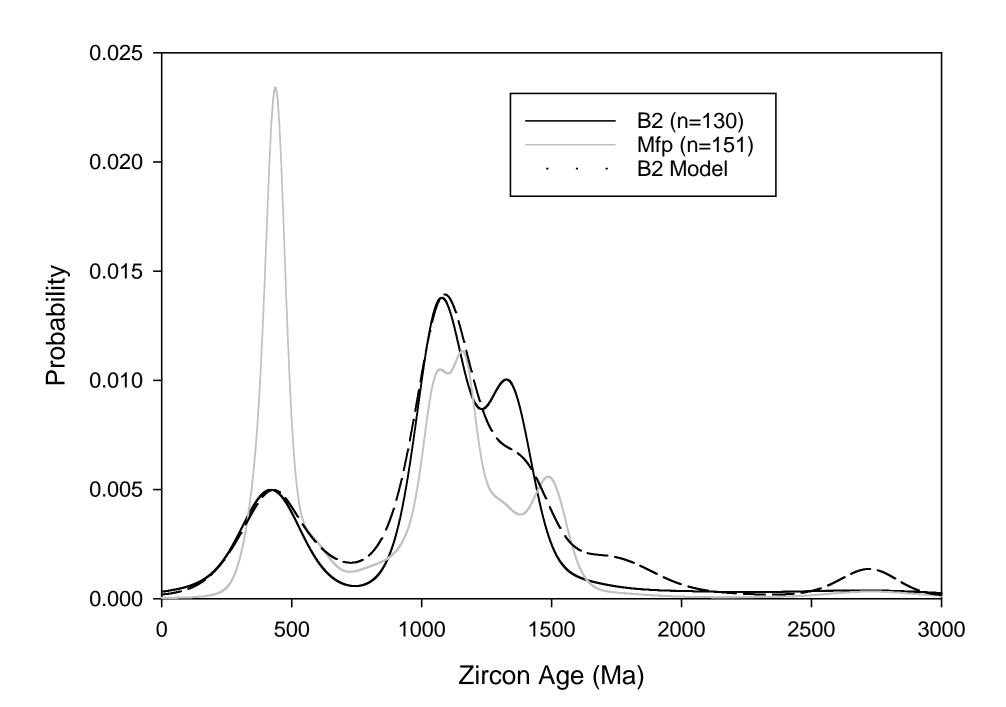
Loess samples

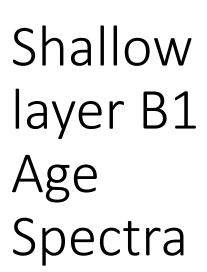


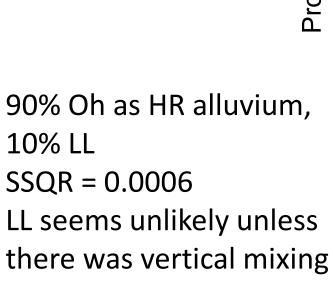

Sample Locations

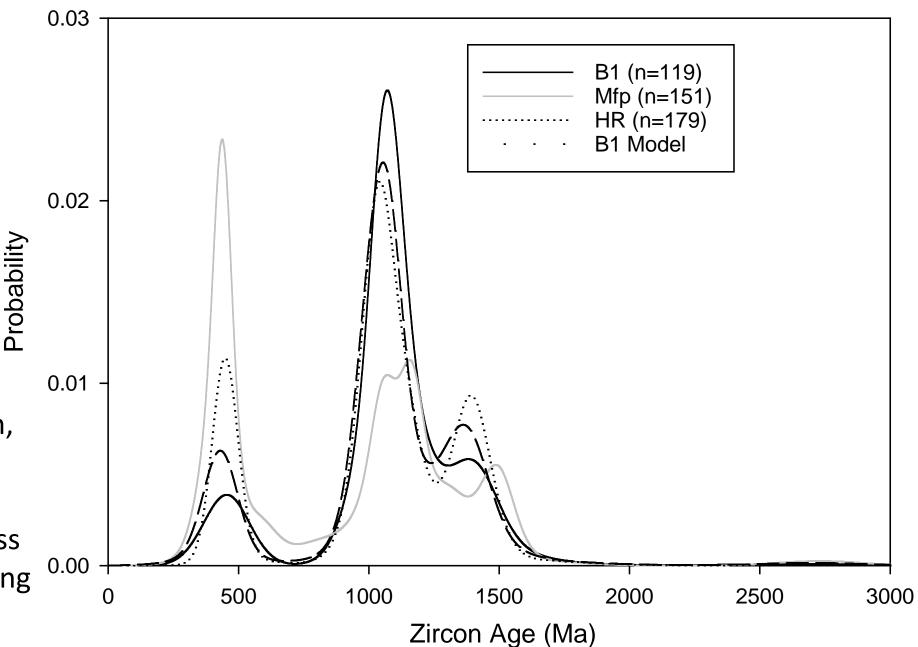
36°0'0"N-

- Mfp = Mississippian Fort Payne (Site 1)
- Obh = Ordovician Bigby Cannon and Hermitage limestones (site 2)

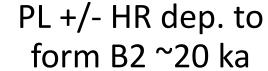



Harpeth River Age Spectra



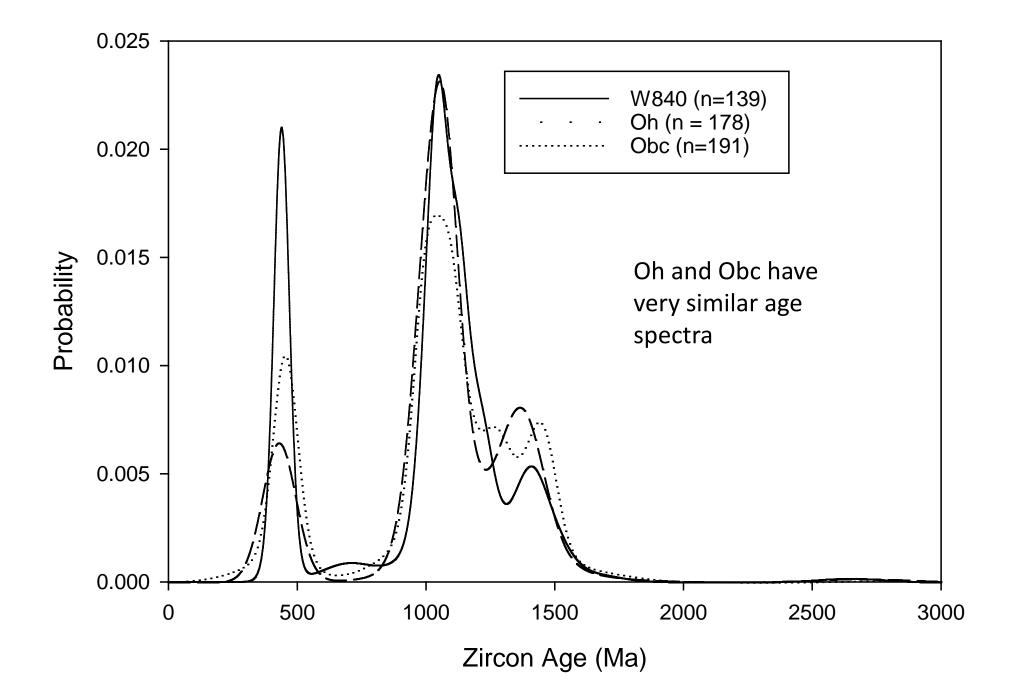

Deep layer B2 Age Spectra

47% LL, 29% PL, 24% Oh SSQR = 0.00028Since Oh is deep beneath the surface at site 1, must have been deposited as HR alluvium.

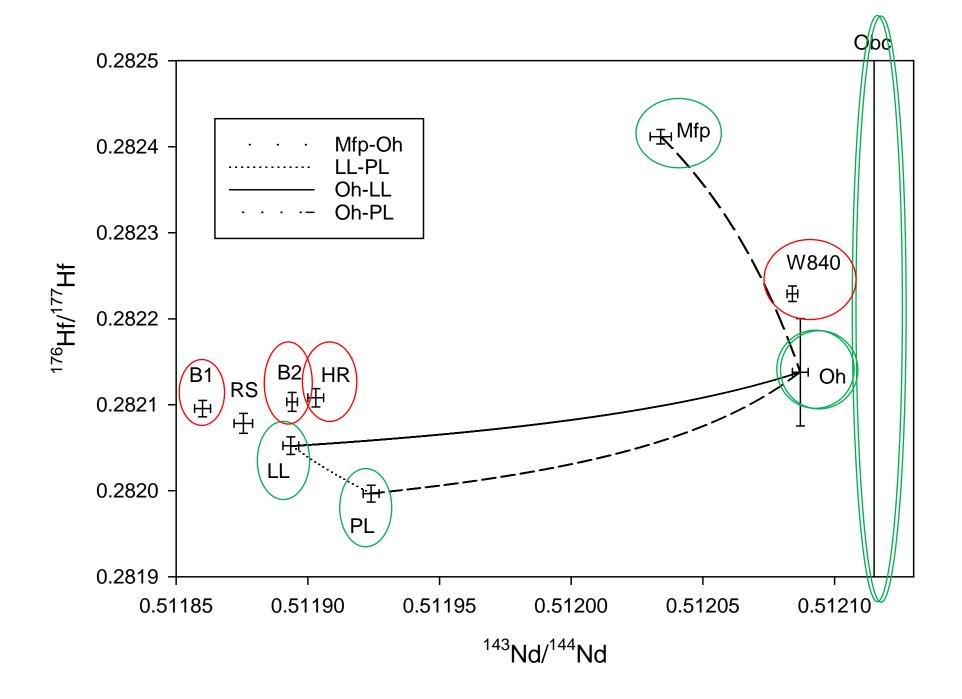


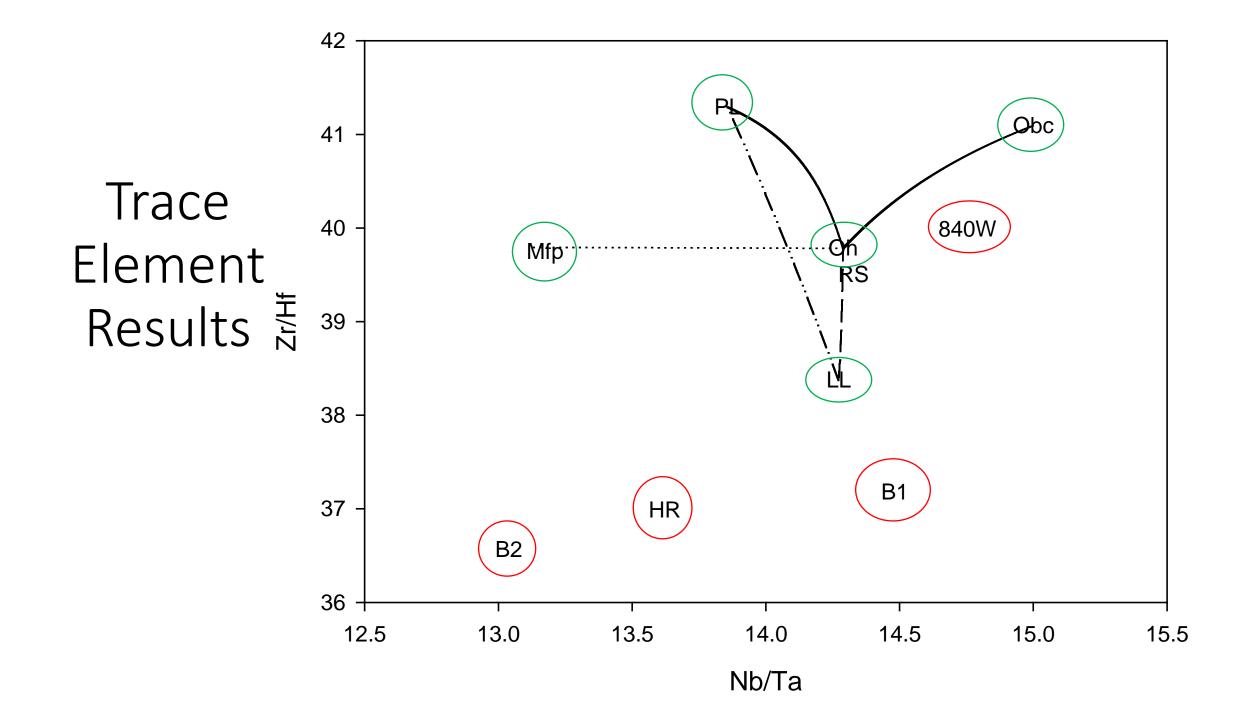


Timeline for Site 1


Terrace formation, LL deposition ~100 ka

HR dep. to form B1




82% Obc, 18% Oh ± Mfp SSQR = 0.001

Bulk Isotope Results

B1 and B2 not close to Mfp

Evidence Consistent With Genetic Relationship?

Parent-soil pair	Mineralogy	U-Pb age spectra	¹⁴³ Nd/ ¹⁴⁴ Nd	¹⁷⁶ Hf/ ¹⁷⁷ Hf	Zr/ H	f Nb/ Ta	Gd _N / Yb _N	Eu/ Eu*	$ au_j^{\S}$
Mfp-B1	N	N	N	N	N	N	Tie†	N	Υ
Mfp-B2	N	N	N	N	N	Υ	Tie	N	Υ
HR-B1	Υ	Y	N	Υ	Υ	N	Tie	Y	
HR-B2	Υ	Υ	Υ	Υ	Υ	N	Tie	Υ	
Oh-W840	Υ	Υ	Υ	Υ	Υ	?	Υ	Υ	Υ
Obc-W840	?	Υ	N		?	?	N	N	Υ
HR-W840	N	Υ	N	N	N	N	N	N	
Binary Mixtures									
(Oh+LL)-B1	N	Υ	N	Y	N	Υ	N	N	
(Obc+Oh)- W840	?	Υ	N	Υ	Υ	Υ	Tie	Tie	
(PL+LL)-B2	Υ	Υ	Υ	N	N	N	N	N	
(Mfp+Oh)- W840	Υ	N	Υ	Υ	Υ	N	Tie	Tie	

^{† &}quot;Y" if parent is closest of all parents to soil, or to binary mixing lines for pairs of parents. For mixtures, soil must plot inbetween sources. "?" indicates ambiguous results. "Tie": Mfp and HR have equal GdN/YbN, and W840 has almost identical GdN/YbN and EuN/Eu*N as Oh.

[§] Mass transfer coefficient τ calculated only for soil-bedrock pairs.

Conclusions

- Bedrock age peaks indicate source rocks for sediments formed during the Taconic orogeny, but many older zircons preserved from prior orogenies.
- Above Fort Payne chert bedrock, ultisol with exotic source:
 - Deposition of Loess and Harpeth River alluvium to form ultisol B2 soil horizon + intense weathering.
 - Deposition of Harpeth River alluvium to form ultisol B1 horizon.
- In-situ weathering of Oh + Obc to form W840 alfisol

Use of zircon U-Pb ages for soil provenance

- Zircon is recoverable from limestone.
- Zircon U-Pb geochronology is an effective tool for determining provenance of soil.
- However, best match in zircon U-Pb mixing model does not always agree with other datasets such as Nd and Hf isotopes.
 - Similar age spectra of our endmembers: all rocks formed from Appalachian sediments.
 - Harpeth River alluvium derived by erosion of those rocks with similar age spectra.
 - Loess deposits have many age peaks, some of which overlap with Appalachian sediment age peaks.

Applications to Igneous & Metamorphic Rocks

- Testing for soil formation by in-situ chemical weathering would be easier if bedrock had only one age peak, which is more likely for igneous bedrock.
- Provenance of metamorphic rocks: Compare zircon U-Pb age spectra
 of protolith and related metamorphic rocks. Could provide
 unequivocal evidence for metamorphic growth (ages younger than
 the youngest age in the protolith)
- Especially useful for metamorphic rocks with clastic sediment protoliths.