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Introduction
• Sediment character affects our understanding of the dynamics of river 

systems.

• Flocculation is important, but difficult to measure.

Objectives:

• 3 independent measures of sediment grain size and concentration 

• Describe patterns in sediment character:
1) sediment concentration with depth and tide 
2) particle size with depth and tide 
3) floc percentage and size with salinity 
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Mekong River

• Discharge

Song Hau Distributary
• 5,000 to 12,000 m3/s 
• Dinh An
• Tran De 

• Sediment Load:  

~40 Mt/yr
• Clay and silt
• Sand during high Q
(Nowacki et al. 2015)

Introduction Study Area Methods Results Conclusions

Ogston et al. (2017)

High Q 
cruise

Low Q 
cruise

Median high Q
Mississippi River: 
22,600 m3/s (USGS)

Columbia River: 
11,300 m3/s (USGS)



Mekong River

• Discharge

Song Hau Distributary
• 5,000 to 12,000 m3/s 
• Dinh An
• Tran De 

• Sediment Load:  

~40 Mt/yr
• Clay and silt
• Sand during high Q
(Nowacki et al. 2015)

Introduction Study Area Methods Results Conclusions

High Q 
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cruise

Mississippi River: 
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Data Collection

• 5 transects - occupied for 12.4 hour and 24.8 
hour tidal periods

• Data types
• Laser In-Situ Scattering Transmissometry (LISST)
• CTD (conductivity, temperature, depth) with 

optical backscatterance (OBS)
• Water and sediment samples
• Acoustic Doppler Current Profiler (ADCP)
• Multibeam bathymetry – bed elevation and 

bottom type

• High discharge and low discharge cruise
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LISST Instrument
• Forward scattering laser 

diffraction

• Measurement range: 

1.9 µm – 381 µm

• Volume concentration 
measurement (µl/L)

• Averaged to fractional depths:

0.1, 0.3, 0.5, 0.7, 0.9
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Low Q Salinity
• Transect C sees very little 

salinity (< 1.5 PSU)

• Transect B and B’: 1- 4 PSU

• Transect A and A’: 4-21 PSU

• Neap tides are less well mixed 
than spring tides and have 
higher maximum salinities
• 10 PSU at Transect B

• 27 PSU at Transect A
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Low Q Suspended Sediment Concentration
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• Same trends 
• Different magnitudes

LISST mass concentration = 
volume concentration*2.65 g/cm3
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Low Q Suspended Sediment Concentration
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• Increasing concentration with 
depth

• Tran De (A’ and B’) > Dinh An

• Neap tides > spring tides 

• Neap tides: Upper and middle 
water column have higher 
salinities
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Low Q Suspended Sediment Concentration
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• Increasing concentration with 
depth
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suspended sediment 
concentrations.

C

BB’
A’ A



Low Q Suspended Sediment Grain Size
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• Particle size increases with 
depth

• Large particles also found in 
the middle and upper water 
column

• Dinh An ≈Tran De
• Neap tides coarser than spring 

tides
• Grain size decreases at the 

bottom of the water column
• Potentially an effect of floc 

break up or settling of the 
largest flocs
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Low Q Suspended Sediment Grain 
Size

Introduction Study Area Methods Results Conclusions

• Same transect

• Different tidal phase

• Spring and neap tides 
have different particle 
sizes

• Neap tides
• Large particles 

throughout the water 
column
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Low Q Suspended Sediment Grain Size
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• Particle size is smaller at 
the bottom of the water 
column

• Potentially an effect of 
floc break up or settling 
of the largest flocs
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In-situ Grain Size vs Disaggregated Grain 
Size

Introduction Study Area Methods Results Conclusions

• LISST provides in-situ particle size
• Malvern Mastersizer 3000 provides 

disaggregated grain size

• In-situ particles = silt and sand range
• Disaggregated grains = clay and silt

Percent change in particle 
size after disaggregation

d10 -179
d50 -134
d90 -54
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Percent of Flocculated Particles

Introduction Study Area Methods Results Conclusions

• ~40 µm threshold (McLachlan et al. 

2017)

• Flocs are present at every transect

• ~50% of the sediment by volume 
in the lower Song Hau is 
flocculated

• Higher percentage is flocculated 
during neap tides 
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Implications for Sediment Transport and 
Trapping in the Mekong River

• Bed shoaling during low Q (multibeam 
surveys of elevation and bed type)
• Deposition of soft mud (0.25 to 1 m thick)

• Covers sand beds (Allison et al. 2017)

• Low (or zero) sand concentrations from 
water samples at low Q (Stephens et al. 2017)

• Salinity stratification shields against 
resuspension at low Q (McLachlan et al. 2017)
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Bathymetric Change (m) Transect B 2014-
2015 (Allison et al. 2017)
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Conclusions

• Flocculation affects the seasonality of sediment export to the ocean 
in the Mekong River
• Low Q: promotes the trapping of fine sediment and the seasonal shutdown of 

sand transport 

• High Q: fine sediment is exported to the ocean

• Salinity increases floc size and settling rate
• Transect A neap  largest particle sizes

• Neap tide conditions enhance flocculation
• Greater mixing of sediment aggregates through the water column

• Larger flocs 
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QUESTIONS?

 Paper forthcoming:

 Suspended sediment character in the tidal Mekong River: 

observations from LISST profiling

 Diana R. Di Leonardo, Mead Allison, Robin McLachlan, Andrea 
Ogston  
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 Office of Naval Research for funding this work, Award Number: 
N00014-14-1-0145

 Field team from Tulane University, University of Washington, and 
Vietnam National University (Ho Chi Minh City) for their tireless 
data collection efforts 
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