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What do the highlighted 

regions have in common?
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Phases of Paleoliquefaction Analysis

Liquefaction during 2010-2011 Canterbury Earthquakes

Phase 1: Field Interpretation



Phase 1: Field Interpretation

• Locate features

• Seismically induced?

• Date (e.g., C-14; OSL; stratigraphy) and tentatively group features

Phases of Paleoliquefaction Analysis
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Phases of Paleoliquefaction Analysis

Trenching modern and paleo-liquefaction features in NZ

Phase 1: Field Interpretation



Phases of Paleoliquefaction Analysis
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Phase 2: Inverse-analysis to compute seismic parameters
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Traditional Paleoliquefaction Analytics: Magnitude Bound Approach
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New Madrid Seismic Zone, USA

Traditional Paleoliquefaction Analytics: Magnitude Bound Approach

Magnitude-Bound 

Correlation

Application



4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

1 10 100 1000

M
o
m

en
t 

M
a
g
n

it
u

d
e,

 M
w

Distance (Rjb)  to Most Distal Liquefaction Site (km)

Global Data (Ambraseys, 1988)

Ambraseys (1988) 

magnitude-bound curve

Mw (min)

Dec: 6.85

CEUS-SSC (2012) Preferred Rupture Scenario

New Madrid Seismic Zone, USA

Traditional Paleoliquefaction Analytics: Magnitude Bound Approach
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Mw6.8   

or  

Mw7.3

or

Mw7.8?
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Limitation #1: Provides only a lower-bound estimate of magnitude

Traditional Paleoliquefaction Analytics: Magnitude Bound Approach
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Traditional Paleoliquefaction Analytics: Magnitude Bound Approach

What does “lower-bound” 

really mean?



Limitation #3: Commonly relies on global correlations

Traditional Paleoliquefaction Analytics: Magnitude Bound Approach
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Limitation #4: Relies on field observations…what if earthquakes are too infrequent?

Traditional Paleoliquefaction Analytics: Magnitude Bound Approach
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Traditional Paleoliquefaction Analytics: Magnitude Bound Approach

Can magnitude-bound correlations be developed without field observations?
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Traditional Paleoliquefaction Analytics: Magnitude Bound Approach
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Intuitively, we may deduce that:

The curve shape is a function of 

energy attenuation & site response
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liquefaction susceptibility

Can magnitude-bound correlations be developed without field observations?



Traditional Paleoliquefaction Analytics: Magnitude Bound Approach

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

1 10 100 1000

M
o

m
en

t 
M

a
g

n
it

u
d

e,
 M

w

Distance (Rjb)  to Most Distal Liquefaction Site (km)

Less Liquefaction 

Susceptible

Intuitively, we may deduce that:

The curve shape is a function of 

energy attenuation & site response

The curve position is a function of 

liquefaction susceptibility

We know what factors control the 

curve. Can we compute curves 

without field observations?

Can magnitude-bound correlations be developed without field observations?
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Can magnitude-bound correlations be developed without field observations?

Using (1) liquefaction triggering mechanics; (2) ground motion prediction equations; and (3) 

the total probability theorem to integrate over model and parameter uncertainties:

The probability that a site liquefies, given magnitude (M) and site-to-source distance (R), is:

P τ ≥ τ𝑡ȁEQK:M, R = න

amax

න

rd

P(τ ≥ τ𝑡ȁ ሻamax, rd 𝑓(amaxȁM, Rሻ 𝑓rd
rd ∙ drd ∙ damax

P γ ≥ 𝛾𝑡ȁEQK:M, R =

න

amax

න

rd

න

𝐺
𝐺𝑚𝑎𝑥

P(γ ≥ 𝛾𝑡 ቤamax, rd ,
G

Gmax
ሻ 𝑓(amaxȁM, Rሻ 𝑓rd rd 𝑓 𝐺

𝐺𝑚𝑎𝑥

G

Gmax
d

𝐺

𝐺𝑚𝑎𝑥
∙ drd ∙ damax

Using Stress-based liquefaction triggering mechanics:

Using Strain-based liquefaction triggering mechanics:

Combining results from the stress- and strain-based frameworks…

State-of-the-Art Paleoliquefaction Analytics



Can magnitude-bound correlations be developed without field observations?
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Can magnitude-bound correlations be developed without field observations?
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Empirical data from 

New Zealand…fits 

±1σ mechanics-

based prediction 

State-of-the-Art Paleoliquefaction Analytics

YES!
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Much more informative, but still two problems:

1) Not all field evidence is utilized (from mechanics standpoint)

2) Must know/assume source location…what if we don’t know?

State-of-the-Art Paleoliquefaction Analytics



State-of-the-Art Paleoliquefaction Analytics

Combining all field data, we can compute the likelihood that an earthquake at a given 

location, having given magnitude, would produce a series of field observations:
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State-of-the-Art Paleoliquefaction Analytics

Proof-of-Concept: 2011 Christchurch, New Zealand, Earthquake

Liquefaction 
Field



State-of-the-Art Paleoliquefaction Analytics

Proof-of-Concept: 2011 Christchurch, New Zealand, Earthquake
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Findings:

1) Most likely source-location is within actual fault projection

2) Corresponding median magnitude (M6.25) is very close to actual (M6.2)
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What is needed in the CSZ moving forward?

Obermeier and Dickenson (2000)

A public database compiling all paleoliquefaction data, to include

a. Location

b. Dating

c.  In-situ geotechnical test data (very few known study-sites have this) = $

Peterson et al. (2014)



Where does paleoliquefaction fit in the Cascadia puzzle?

Type of Evidence

Earthquake Characteristics Obtainable From Evidence

Recurrence 

Rate
Ground Motions Rupture Location Magnitude Other Source Traits

Dendrochronology

Diatoms/Microfossils

Other Subsidence Markers

Tsunami Deposits/Impacts

Turbidite Record

On-Fault Evidence

Landslides

Liquefaction Limited Very Strong Strong Strong ?



Conclusions

 Multidisciplinary collaboration is needed to exploit the results of field studies.

 Decades of work have too often ended in the use of very simple and

debunked methods. This impacts our national seismic hazard maps.

 New paleoliquefaction analytics can probabilistically compute:

 Causative ground motions at individual sites.

 Source location and magnitude distribution from regional evidence.

 What is keeping up from applying these new analytics in the CSZ?

 Existing data must be compiled from all researchers.

 For most study-sites, in-situ geotechnical tests need to be performed.
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