Using geophysics to better understand wetland hydrogeology

David Hart and Carolyn Streiff

Wisconsin Geological and Natural History Survey

Geophysics is often a good choice for wetland studies

- Flat
- Often no trees or other obstructions
- No "cultural" interference
- Equipment is relatively portable and unlikely to become stuck

Geophysics is often a good choice for wetland studies

- Flat
- Often no trees or obstructions
- No "cultural" interference
- Equipment is relatively portable and unlikely to become stuck
- Information helps locate boreholes and piezometers

tow411.yuku.com

http://www.independenttestingtech.com/drilling_services

Geophysics is often a good choice for wetland studies

- Flat
- Often no trees or obstructions
- No "cultural" interference
- Equipment is relatively portable and unlikely to become stuck
- Helps locate boreholes and piezometers for better information.

Geophysics Used

• Electrical Resistivity Imaging

• EM-31 Ground Conductivity Meter

• Seismic Refraction

• Ground Penetrating Radar

EM-31 Qualitative Example

Mukwonago Wetland at Lulu Lake Nature Preserve

EM-31 Qualitative Example

Mukwonago Wetland at Lulu Lake Nature Preserve

EM-31 Operation

- Operating Principle
 - Instrument induces electrical current in earth with alternating current in coil in one end of instrument. (No direct contact with ground)
 - Coil in other end senses the current in the earth.
 - More induced current \rightarrow Better conductor
 - Changing Coil orientation → changes depths sensed

EM-31 Operation

Some site features

EM-31 results

- High conductivity
 - higher water content,
 - more ions
 - more clay
- Low conductivity
 - lower water content,
 - fewer ions
 - less clay

Mismatch is due to data collection at two different times.

Lower conductivity is after ground has frozen

00

8 ouroe: Esil, Digital@lobe, @eoEye, Earŭistar @eographiles, GNES/Alibus DS, USDA, US @8, Aero@RID, I@N, and the @IS User Community

Auger borings show low conductivity is from sands and gravels

Organic Soil

Source: Esd, Digital@lobe, @eoBye, Eartistar @eographics, CNES/Alibus DS, USDA, US@S, Aero@RID, I@N, and the GIS User Community

A THURTH

Mink River Wetland

Home to endangered species of dragonfly. Depth to bedrock needed to understand groundwater flow. http://wisconsingeologicalsurvey.org/wofrs/WOFR2008-04.pdf

Three Layer System including air

Photo – Ken Bradbury

Three Layer System

http://www.geonics.com/pdfs/technicalnotes/tn6.pdf

$$\sigma_a = \sigma_{air} \Big[1 - R_V \big(z_{air} \big) \Big] + \sigma_1 \Big[R_V \big(z_{air} \big) - R_V \big(z_{marl} + z_{air} \big) \Big] + \sigma_2 R_V \big(z_{marl} + z_{air} \big) \Big]$$

Three Layer System

$$\sigma_a = \sigma_{air}^{0} \left[1 - R_V(z_{air}) \right] + \sigma_1 \left[R_V(z_{air}) - R_V(z_{marl} + z_{air}) \right] + \sigma_2 R_V(z_{marl} + z_{air})$$

Measured by EM-31

Estimated and assumed from resistivity lines

Estimated instrument height for $z_{air}=d_{air}/coil$ spacing; Rv (z_{air}) from graph of Rv(z)

 $R_V(z_{marl}+z_{air})$

Only unknown left. Do algebra to solve for $R_V(z_{marl}+z_{air})$. Once known, then can find z_{marl} and finally $z_{marl} \ge 0$ and spacing of 3.7 m = d_{marl}

• EM-31 provided qualitative information for locating borings and wells

• EM-31 and ERI provided estimates of depth to bedrock over much of the wetland.

