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ABSTRACT

The Upper Pennsylvanian (Virgillian) to lowermost Permian
(Wolfcampian) El Cobre Canyon and Arroyo del Agua formations in the

Chama Basin of northern New Mexico are well exposed in a 250+ m PALEOSOLS
section in Canyon El Cobre (Rio Arriba County), northern New Mexico.
We studied this succession in an attempt to describe the climate system Locally, mudstones display a variety of pedogenic features. Common ISOTOPIC DATA

that existed at the time, and more specifically identify 1f or when the

mudstone fabrics vary from blocky to platey, and less commonly

climate became increasingly arid, as has been proposed. 11275, 224- Ron-ed N prismatic. Some beds display prominent sand-filled desiccation fractures, 0"°C - With the.exception of two outliers, the 6.13C daFa 'demonstrat.e
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minor limestones. These sediments represent channel-fill deposition and a ; ' of coalescing nodules. These typically have nodular upper surfaces and A0S P G s = : BeIE
overbank muds (dominantly), sandy splays and (minor) floodplain ponds. % g 8 e R . N bases that are gradational, transitioning downward to vertically-stacked SO Of greitestiolnifineat e A B T o e o
The stratigraphic sequence records an upward transition from mainly SEX L B . S discrete cm-scale nqdules (I.‘hIZOCI‘e-tIOIlS) and 1solated nodules. Most of the SedopeTiok aabon e SO RIES S e e o T o
braided streams in the El Cobre Canyon Formation to anastomosing . Etﬁ <O L TNl calcretes 1n the studied section are immature (Stage I to II), but mature e et e E P C obro.Cony o oty LR & mea;l 5150 of -4.02 %,
streams in the Arroyo del Agua Formation. = E '-_',J e R calcrete beds (Stage III to IV), with coalescing nodules forming laterally (ODB) i oldetamaic tor PR e (Pi)B) oy T Tabc')r o
T E_) Z T, s continuous (K) horizons occur at multiple levels throughout the section. Niottior @002) o teds i an valile of 650 = -1.2 %, (PDB) for o
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difference in paleosol type between the two formations, we note that the Thin, truncated composite profile of multiple coalesced Mack et al. (1993) in assigning names of paleosol orders, modified by seas following the Middle Pennsylvanian (DesMoinesian) highstand.
calcretes in the Arroyo del Agua Formation are generally thicker than nodulal layers between sandstones. 50 -3.0 adjectives describing the most promn:lent subordinate cha.ract.erlstlc.. The Similarly, we interpret the enrichment observed within the Cutler Group
those in the underlying El Cobre Canyon Formation. A significant l §°C -4.5 < most common paleosol type we find in the measured section 1s calcic pedogenic carbonates, spanning the Virgillian to early Wolfcampian, as
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calcareous nodules we label them calcic Protosols. Sangre de Cristo Formation. We interpret this difference as due primarily to
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m | > ergszs Conglomerate differentiation in paleosol types between the El1 Cobre Canyon and Arroyo
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Formation of the Cutler Group, strata of Late Pennsylvanian-Early e 50 3 4 M | ISOTOPE DATA e Isotopic analysis shows consistent 8'°C through the entire
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sheet sandstones and intervening mudstones in the lower part. Detail of above.
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