Rift Initiation and Evolution Recorded in the Oblique Tusas–Abiquiu Segment of the Rio Grande Rift, New Mexico

Yiduo Liu¹ Michael A. Murphy¹ Jolante van Wijk^{1,2} Ross A. Andrea¹

1 University of Houston

2 New Mexico Tech

Supported by the GSA Graduate Student Research Grants & the AAPG Foundation Grants-in-Aid

Rio Grande rifting: multiphase and multi-directional

(Zoback et al., 1981; Ebinger et al., 2013)

Oligocene Extension: Basin & Range, S RGR, and N RGR

Dike is not really a good indicator for the extension orientation in the N RGR...

Motivations

(1) A *kinematic* test of *kinematic* models of the RGR

- Rather than inferring from dike trend & basin geometry
- (2) A comparison with other rifts and rifting models

Conclusions

Kinematics

Near E-W extension

Local N-S "extension"

Mechanism

Small-scale convection

Loading of the Jemez VF

Oblique extension in Abgiuiu & Tusas; fault growth & linkage

Pacific-North America oblique motion

Orthogonal extension in Tusas; reactivation

Farallon slab removal

Tusas segment

Tangent-Lineation Diagram

Rake Rose Diagram

Tusas segment

Multi-direction extension: 1, S55°W, near orthogonal rifting 2, near E-W, oblique (dextral-normal) 3, N50°W (?)

75° clockwise rotation of the extension orientation

Abiquiu segment

N = 14, n = 33

N = 62, n = 266

Internal faults in the Abiquiu embayment

N = 42, n = 250

- Short & distributed
- Small displacement
- Cut previous structures
- Fault scarps detectable
- Present in both RGR & CP

"Slip re-orientation" in oblique rifts under the influence of a crustal-scale weak zone

Slip re-orientation model vs. observation

(modified from Philippon et al., 2015, Geology)

Tusas segment

- no slip re-orientation during oblique (WNW) extension
 - re-oriented strain paths not yet exposed
 - higher friction (magma-poor?)
- strike of reactivated fault not indicative of extension orientation

Abiquiu segment

- slip re-orientation may have occurred during WNW extension
 - weak crust underneath
 - elevated pore fluid pressure
 - more evolved stage?

Conclusions

Kinematics

Near E-W extension

Local N-S "extension"

Mechanism

Small-scale convection

Loading of the Jemez VF

Oblique extension in Abgiuiu & Tusas; fault growth & linkage

Pacific-North America oblique motion

Orthogonal extension in Tusas; reactivation

Farallon slab removal

Thank you!