

Is Erosion by Lava Important on Mars?

Laszlo Keszthelyi (Kestay), Colin Dundas, Windy Jaeger

U.S. Department of the Interior U.S. Geological Survey

Outline

- Is erosion by lava even possible?
- If so, are the primary physics of aqueous and lava floods different?
- If not, how are we going to tell their channels apart?
 - Consilience: geologic context, transition zones, etc.

Erosion by lava happens on Mercury

Erosion by lava happens on Venus

Erosion by lava on the Moon

Erosion by lava on the Earth

But on Mars it is controversial

There is a real bias to call upon water...

Aqueous or Volcanic?

How to we distinguish fluvial and volcanic channels?

We (sort of) know how to distinguish erosional fluvial channels from constructional volcanic channels...

Clearly Aqueous

Clearly Volcanic

How to we distinguish fluvial and volcanic channels on Mars?

Much harder to differentiate channels formed by turbulent floods

Physics of turbulent lava flows

- Much harder to differentiate channels formed by turbulent floods
 - In turbulence, Re ($\rho v L/\eta$) is what matters
 - It does take a greater L for lava to go turbulent
 - For a given L, lava will have a lower Re
- Recent studies suggest erosivity controlled by Shields Number

 $\tau^* = \tau / (\Delta \rho \ \boldsymbol{g} \ \boldsymbol{D})$

Physics of turbulent lava flows

IV

X g

Loess

Pre-Wisconsin Loess

Basalt Entablature

Longitudinal Vortices

Water Surface

00

Basalt Colonnade

What about thermal erosion?

Melting the substrate takes time – rate limited by conducting heat into cold ground

Cataldo et al. 2014

Figure 1: Erosion depth in meters (y-axis) plotted against distance from lava source in kilometers. 20 m and 45 m are flow thicknesses; L.V. = lower volumes = 5000 km³; H.V. = higher volumes = 7500 km³. H.V.I. = higher volume + 25% substrate H₂O.

How to we distinguish fluvial and volcanic channels on Mars?

- Scale and style of major erosion should be identical
- Can't be eroded by lava if there is no lava
 but there can be draping lava
- Key may be secondary features...

How to we distinguish fluvial and volcanic channels on Mars?

- Lava should not create m-scale erosion channels
- Lava should not create bedload features (dunes, bars, deltas) because rocks stay in suspension

Examples: Kasei Valles

Examples: Hurwitz et al 2010

Examples: Hurwitz et al 2010

Examples: Rilles

Examples: Athabasca Valles

Conclusions

- Erosion by lava is possible.
- The primary erosion by aqueous and lava floods should be very similar.
- We can identify the erosive fluid when we can observe secondary features.
- There are many good examples of erosion by lava on Mars.
- There are many places that require further study.

