

## Abstract

The Jurassic Navajo Sandstone of central Utah records an intermediate region of eolian deposition between an erg margin to the east and the erg center towards the southwest. Stratigraphic analyses of the total Navajo formational thickness reveal that there are several vertical trends in grain size, bed set thickness, soft sediment deformation intervals, and facies that vary spatially across the San Rafael Swell, indicating a dynamic history of evolving depositional conditions across the erg system.

Lithofacies are broadly categorized into three facies groups based on interpretations of the depositional environment. 1) Dune deposits are characterized by different styles and thicknesses of crossbed sets and geometries of set bounding surfaces. 2) Interdune deposits (ID) contain interbedded mudstones and sandstones, with common cm-scale crossbed sets, ripple laminations, vuggy and crinkle laminations, massive sandstones, and mudstone conglomerate lags with autochthonous rip-up clasts. 3) Synsedimentary, soft-sediment deformation structures include contorted and massive beds. Local, large-scale (3-10 m) contorted beds are commonly with associated breccias, and microfaults.

The eolian Navajo Sandstone represents the largest erg recorded in geologic history. Despite the record of a vast dry desert, interdune deposits and synsedimentary structures indicate periods of high-water table conditions present as far as 130 km from the erg margin. Across the San Rafael Swell, Navajo thickness averages about 130 m on the east, to roughly 140 m in the west. Three stratigraphic "zones" show vertical changes in Navajo deposition. 1) The lowest 10 m consist of cm- to dm-scale trough crossbedded sandstones. 2) The middle 70 m interval consists of planar crossbedded eolian sandstones and lenticular interdune beds that correlate to first order bounding surfaces. 3) The upper 60 m is dominated by large scale (3-20 m) trough-cross beds. Stratigraphic data indicates that early Navajo depositional history was typified by small dune forms interspersed with interdune oases and later abruptly transitioned to a drier environment with large draas that lacked interdune oases and were subject to either periodic draas slope failures or seismicity.

# Conclusions

• The Navajo evolved from an erg with oasis interdunes, which supported fauna and microbial mats, into a drier sand-sea with massive draas and no interdunes. • The upper Navajo's larger grain size, large trough crossbeds, and larger foreset thicknesses indicate formation in a very dry eolian system. • Fluid alteration and some deformation features are lithologically bounded by 1st or 2nd order surfaces and occasionally by 3rd order.



Figure 1. Cross cutting relationships and lateral extent of bounding surfaces (Brookfield, 1977).



gure 2. (left) Evidence of near-surface water: (I root growing beneath interdune Deepe ubsurface water: soft-sediment deformati dune strata from subsurface fluidization (III). I, III, IV from Figure 5 section B; IV from D.







Study Area



Figure 3. Elevation map of San Rafael Swell with lettered locactions corresponding to sections in Figure 5.





Figure 4. General vertical trends observed in measured Navajo stratigraphic sections, see Figure 5. Crossbed types: small trough (Txs), planar (Pxb), and large trough (Txl).

# Stratigraphic Evolution of the Jurassic Navajo Sandstone Erg, San Rafael Swell, Central Utah

# Peter A. Steele<sup>1</sup>, Marjorie A. Chan<sup>1</sup>, David F. Wheatley<sup>1</sup>

(1) Department of Geology & Geophysics, The University of Utah

Buckhorn Wash lower (A-left) Buckhorn Cliff (C) and upper (B-right) Justensen Flats (D) sand clay bebb bebb vf f m c vcd (m) above base 중 sand of Navajo 강 양 f f m c vc 입 sand <u>t</u> vf f m c vc Lithofacies Legend planar cross-bedded small trough crossbedded sandstone large trough cross-bedded sandstone soft-sediment deformed brecciated sandstone sheet sandstone (75-100 m thick) Figure 5. Measured stratigraphic sections with lithofacies described in Table 1. Sections have been broken into upper and lower zones based on the last measured occurrence of interdune facies. Note that sections A, B, and C are located within ~5 km of each other while section D is located ~50 km to the southwest, towards the erg-center. of Navajo



interbedded sheet sandstone and conglomerate intraformational conglomerate

sheet mudstone

cross-bedded to cross-laminated sandstone

pseudo-bedded sandstone

# Stratigraphic Zones Upper Navajo

Lower Navajo (60-80 m thick)

Navajo Zone Boundary

Distinct Stratigraphic Horizon Boundaries

sand

Dune Associations



Interdune Associations



#### 3<sup>rd</sup> Order Bounding Surface (intra-dune set migration lamina surface)

\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_

|                  |                                                |      |               | Navajo S                                     | Sar | nds        | ton           | e F      | ac | ies    | of t         | he           | Sa        | n | Rafael Swell                                                                         | 1                                                                                     |
|------------------|------------------------------------------------|------|---------------|----------------------------------------------|-----|------------|---------------|----------|----|--------|--------------|--------------|-----------|---|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Associ-<br>ation | Lithofacies<br>Name                            | Code | Grain<br>Size | Sedimentary<br>Structures                    | 0.1 | nickn<br>1 | ess (<br>5 10 | m)<br>30 | 0. | Latera | al Ext<br>10 | ent (<br>100 | m)<br>500 | 0 | Depositional Environment                                                             | Diagenetic Color                                                                      |
|                  | planar<br>crossbedded<br>sandstone             | Pxb  | vf-f          | planar to<br>wedge cross-<br>stratification  |     |            |               |          |    |        |              |              |           |   | straight-crested dunes                                                               | tan - unaltered; white to<br>grey altered (reduced); red -<br>altered (oxidized)      |
| Dune             | large trough<br>crossbedded<br>sandstone       | Txl  | f             | large-scale<br>trough<br>cross-strat.        |     |            |               |          |    |        |              |              |           |   | large barchanoid, sinuous to<br>linguoid-crested dunes                               | tan - unaltered; white to<br>grey altered (reduced); red -<br>altered (oxidized)      |
|                  | small trough<br>crossbedded<br>sandstone       | Txs  | vf-f          | small-scale<br>trough<br>cross-strat.        |     |            |               |          |    |        |              |              |           | : | small barchanoid, sinuous to<br>linguoid-crested dunes                               | tan - unaltered                                                                       |
| Interdune        | sheet<br>plane-bedded<br>sandstone             | Spb  | vf-f          | planar laminae                               |     |            |               |          |    |        |              |              |           |   | dry interdune flats                                                                  | tan - unaltered                                                                       |
|                  | ripple laminated sandstone                     | Rip  | vf-f          | ripple<br>laminations                        |     |            |               |          |    |        |              |              |           |   | ripples in shallow interdune<br>pond                                                 | pink to red - altered<br>(oxidized)                                                   |
|                  | undulose<br>laminated<br>sandstone             | Unl  | vf-f          | undulose<br>laminations                      |     |            |               |          |    |        |              |              |           |   | crinkly texture from microbial mat in shallow interdune pond                         | pink to red - altered<br>(oxidized)                                                   |
|                  | massive<br>sandstone                           | Mss  | vf-f          | structureless                                |     |            |               |          |    |        |              |              |           | i | saturated sediments beneath<br>interdune pond                                        | tan - unaltered; white to<br>grey altered (reduced); red -<br>altered (oxidized)      |
| med              | soft-sediment<br>deformed<br>sandstone         | Ssd  | vf-f          | ductiley<br>deformed<br>crossbeds            |     |            |               |          |    |        |              |              |           | 1 | weakly-cemeted strata ductilely deformed via liquefaction and fluidization           | white - altered (reduced); red -<br>altered (oxidized); diagenesis<br>pre-deformation |
| Defor            | brittley deformed sandstone                    | Bss  | vf-f          | breccias, fluid<br>escapes,<br>microfaulting |     |            |               |          |    |        |              |              |           | 1 | partially-lithified strata brittely<br>deformed via liquefaction and<br>fluidization | grey - altered (reduced)                                                              |
| Eolian-Fluvial   | interbedded<br>sheet sandstone<br>and conglom. | Isc  | vf-<br>peb.   | planar pebble<br>and sandstone<br>beds       |     |            |               |          |    |        |              |              |           |   | channel-proximal floodplain                                                          | tan - unaltered, green clasts<br>- ripup                                              |
|                  | intraformational conglomerate                  | ltc  | clay-<br>peb. | load struct., &<br>inv. to norm.<br>grading  |     |            |               |          |    |        |              |              |           | i | confined debris flow and<br>unconfined sheet flow in erg<br>interdunes               | unaltered: brown - mud, tan -<br>sand; green/other colors -<br>ripup                  |
|                  | sheet mudstone                                 | Smd  | clay- f       | sheet planar<br>muds with<br>sharp base      |     |            |               |          |    |        |              |              |           |   | channel-distal floodplain                                                            | green mud and vf white sand                                                           |
|                  | crossbedded to<br>crosslaminated<br>sandstone  | Xxs  | f-m           | cross-lam.,<br>norm. grad.,<br>sharp base    |     |            |               |          |    |        |              |              |           | i | interdune river channel                                                              | tan - unaltered; grey -<br>altered (reduced)                                          |
| Fluid<br>altered | pseudo-bedded<br>sandstone                     | Psb  | vf-f          | structureless w/<br>some primary<br>bed.     |     |            |               |          |    |        |              |              |           | 1 | modified dune crossbed<br>foresets                                                   | grey or white - altered<br>(reduced)                                                  |

assification scheme based on outcrop-derived measured sections within the San Rafael Swell, Emery County, Utah. 5 major associations are distinguised by groups of related lithofacies. Range in thickness and lateral extent of each lithofacies was based on Table 1 from Dalrymple and Morris (2007).



#### **2<sup>nd</sup> Order Bounding Surface** (intermediate surfaces of dune set boundaries)

Figure 6. Lithofacies examples from each association are provided to illustrate geometries, stratigraphic relationships, sedimentary structures, and that fluid flow directions are provided where applicable (4, 12). Bounding surfaces correspond to Figure 1. Pictures were taken around Justensen Flats and adjacent Devil's Canyon both in Emery County, Utah.

### **References**:

Funding for this project was provided by the National Science Foundation, AAPG Grants-in-Aid, Dalrymple, A., and Morris, T., 2007, Facies analysis and reservoir characterization of outcrop analogs to the Navajo Sandstone in and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Rocky Mountain the central Utah thrust belt exploration play: Utah Geological Association Publication 36, p. 311–322. CarbonSAFE project under Award No. DE-FE0029280. Thank you to Jeff Gay, Alex Lowe, Casey Duncan, Sam Brookfield, M.E., 1977, The origin of bounding surfaces in ancient aeolian sandstones: Sedimentology, v. 24, p. 303–332, doi: Chesebrough, Valerie Cormack, Madi Mcintyre, Nate Moodie, and Spencer Hollingsworth. 10.1111/j.1365-3091.1977.tb00126.x.







# 1<sup>st</sup> Order Bounding Surface (erosional, major horizonal surface)

Flow Direction

### Acknowledgements