Paper No. 188-6
Presentation Time: 9:00 AM-6:30 PM
PETROLOGIC CONSTRAINTS ON THE EXHUMATION OF THE SIERRA BLANCA METAMORPHIC CORE COMPLEX (AZ)
The Sierra Blanca metamorphic core complex (SBMCC), located 90 miles west of Tucson, is part of the southern belt of metamorphic core complexes that stretches across southern Arizona. The SBMCC exposes Jurassic age sedimentary rocks that have been metamorphosed by intruding Late Cretaceous peraluminous granites and pegmatites. Evidence of this magmatic episode includes polysythetic twinning in plagioclase, albite exsolution of potassium feldspar resulting in myrmekitic texture, and garnet, mica and feldspar assemblages. The magmatic fabric is overprinted by a Tertiary (Miocene?) tectonic fabric, associated with the exhumation of the Sierra Blanca metamorphic core along a low-angle detachment fault, forming the SBMCC. The NW-SE elongated dome of metamorphic rocks forms the footwall of the detachment shear zone, and is separated from the hanging wall, composed of Paleozoic and Mesozoic metasedimentary rocks, by a low-angle detachment shear zone. Foliation is defined by gneissic layering and aligned muscovite, and is generally sub-horizontal, defining the dome. The NNW-SSE mineral stretching lineation is expressed by plagioclase and K-feldspar porphyroclasts, and various shear sense indicators are all consistent with a top-to the-NNW shear sense. Lineation trends in a NNW-SSE orientation; however, plunge changes across the domiform shape of the MCC. Much of the deformation is preserved in the blastomylonitic gneiss derived from the peraluminous granite, including epidote porphyroclasts, grain boundary migration in quartz, lozenged amphiboles, mica fish, and retrograde mineral alterations. Detailed petrologic observation and microstructural analysis presented here provide thermomechanical constraints on the evolution of the SBMCC.