GSA Annual Meeting in Seattle, Washington, USA - 2017

Paper No. 157-14
Presentation Time: 9:00 AM-6:30 PM

DISTRIBUTION OF MAGNESIUM AND PHOSPHOROUS IN THE H. AMERICANUS EXOSKELETON: INSIGHTS FOR CHEMICAL SIGNATURES IN BIOMINERALS


MERGELSBERG, Sebastian T., ULRICH, Robert N., RIMSTIDT, J. Donald and DOVE, Patricia M., Department of Geosciences, Virginia Tech, 4044 Derring Hall, Blacksburg, VA 24061, merges@vt.edu

Crustacean exoskeletons provide a unique opportunity to study biogenic amorphous calcium carbonate (ACC), a common intermediate phase in the biomineralization of invertebrate skeletons. The lobster exoskeleton is of particular interest as a complex biocomposite of organic matrix (primarily chitin) and CaCO3 mineral (ACC with minor calcite). This metastable ACC remarkably persists for up to one year. Previous investigations demonstrate the ubiquitous presence of Mg and P in the exoskeleton but a broader understanding of elemental signatures is limited. Despite the discrepancies, the data suggest anecdotal evidence for underlying systematic relationships.

To test this idea, we designed a series of experiments that used three extraction procedures to isolate the mineral (ACC plus calcite) fraction from the organic (chitin and protein each) fractions for seven body parts of the lobster exoskeleton. A parallel structural study of the mineral component was conducted using high energy X-ray scattering.

We confirm previous reports that the mineral component compromises ≈30% of the main body exoskeleton and is ≈85% ACC, with the remainder as calcite. Chelae (claws) contain a still-greater proportion of ACC (>90%). Measurements show the Mg, P, Ca concentrations in the bulk and mineral fractions are variable and body part-specific. However, the ratios of these elements are highly regulated at Mg/Ca ≈ 0.084±0.011 (n=108) and P/Ca ≈ 0.098±0.003 (n=108) for all body parts except the chelae, where Mg and P ratios relative to Ca are offset to higher values. There is no evidence of a separate phosphate phase. The mineral fraction dominates the bulk trends of total Mg and P.

The systematic relationships reported here for the lobster exoskeleton hold promise for establishing compositional correlations between body parts for studies that lack complete animal samples. In addition, we compare composition ratios of four exoskeleton-forming species and find the Mg/Ca and P/Ca values are covariant to suggest a single trend, although data are limited. The findings also suggest a broader understanding of crustacean exoskeleton composition patterns is possible and support the idea that Mg and P levels are tuned in the mineral component to optimize exoskeleton function that could be sensitive to ecological or environmental conditions.