SUCCESSFUL MULTI-LEG COMPLETION OF KS-13 ML-1 & INCREASED POWER GENERATION OF PUNA GEOTHERMAL VENTURE (PGV), HAWAI’I
The geothermal reservoir at PGV is hosted within a step-over along the axis of the Kilauea Lower East Rift Zone. Subsurface permeability at PGV is controlled by sub-vertical and rift-parallel fractures/faults and dike swarms which are the result of active tectonic dilation across the rift and shallow volcanic activity related to Kilauea. At PGV, the location and attitude of these fractures are well constrained at depth by drilling to be orientated at N63°E and dipping at 5° NW. These fractures are aligned en-echelon and form a major left-step along the rift axis which results in a localized zone of enhanced dilation.
In 2016, a program was initiated to increase injection capacity and enthalpy in the PGV wellfield. Existing injection well KS-13 was selected as a candidate for re-drill based on a comprehensive resource model and reservoir modeling predictions. KS-13 ML-1 was designed as a multi-leg completion from the existing KS-13 well, whereby the final completion is a forked well composed of the original wellbore and the newly completed second wellbore. The target area for the new multi-leg (ML) were large aperture, steeply dipping fractures associated with the 1955 eruptive fissure.
Well KS-13 ML-1 was drilled using PGV’s Rig and a retrievable whipstock to mill a casing exit window. With the original wellbore temporarily plugged, a multi-rate water loss test was performed and an injectivity of 6 gpm/psi was measured. Following the removal of the whipstock ramp and packer from the original hole a 2nd test was performed on both KS-13+KS-13ML1. An injectivity of 7.2 gpm/psi was measured.
KS-13 injection tripled from 600 kph prior to the redrill to 1800 kph afterward, and allowed an injection well that was cooling production to be shut in. This increased production enthalpy from 500 Btu/lbm to 580 Btu/lbm and available plant output increased 41% from 27 MW to 38 MW.