Quantifying the effect of fluorine on the viscosity of silica undersaturated melts in the NaAlSiO₄-KAlSiO₄ system

Madeline Bruno¹, Geneviève Robert², Rebecca Smith¹,²
¹Bates College, Department of Geology, Lewiston, ME
²University of Massachusetts–Amherst, Department of Geosciences, Amherst, MA

Introduction

Silk viscosity directly influences the movement of magma below and above the crust of the Earth. Physical properties like melt viscosity are dependent on the structure of a melt, which in turn depends on composition.

In magmatic systems, volatiles such as water, CO₂ and halogens have a large influence on viscosity. Fluorine, even in small amounts, has been shown to reduce the viscosity of most silicate melts (e.g. Dingwell et al. 1985; Dingwell 1987; Webb et al. 2004; Zimova and Webb 2007; Baasner et al. 2013 and others). We quantify the effect of fluorine as a function of sodium-potassium mixing along the nepheline-kalsilite join. Le Losq and Neuville (2013) have shown that the structures created from this mixing are not random and directly influence viscosity.

Methods

We calculated the chemical dependence of viscosity. This model overestimates the influence of viscosity on the Na-K mole% melts, except for Ne₂₅. However, the model correctly predicts that fluorine lowers viscosity of the melts.

Sample Characterization

Structure and properties of fluorine-bearing aluminosilicate melts: the system Na₂O-Al₂O₃-SiO₂-F at 1 atm. Contributions to Mineral Petrology 91, 205-220.

Viscosity Results

For our metaluminous or slightly peraluminous melts we observe that F reduces viscosity, which is also observed by Dingwell (1985), Zimova and Webb (2007), and others. The effect of F is greater at higher potassium concentrations. Compositions Ne₅₀, K₁₅₀ (ΔT²<12°C) and Ne₇₅, K₁₂₅ (ΔT²<48°C) saw the greatest reduction.

Legend for all graphs

- F-free (Na,K)AlSiO₄ glass
- F-bearing (Na,K)AlSiO₄ glass
- experimental data
- calculated viscosity (Giordano et al. 2008)

Implications

Comparison to Existing Viscosity Models

Empirical models (Giordano et al. 2008) calculate the chemical dependence of viscosity. This model overestimates the influence of fluorine on the viscosity of Na-K melts compositions, except for Ne₂₅. However, the model correctly predicts that fluorine lowers viscosity of the melts.

Application to Volcanic Processes

If a felsic basaltic melt containing dissolved fluorine were to erupt at the surface of the earth, it would be able to flow longer than a F-free lava at the same cooling rate. The F-free melt would reach the glass transition, where movement stops and glass is formed (~12 log Pa s), far before the F-bearing melt.