Assessing the Role of Framework Geology on Barrier Island Geomorphology

Phillipe Wernette^{1*}, Chris Houser², Bradley Weymer³, Mark Everett⁴, Michael P. Bishop¹, and Bobby Reece⁴

¹Texas A&M University, Department of Geography, College Station, TX, USA ²University of Windsor, Department of Earth and Environmental Sciences, Windsor, ON, Canada ³GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany ⁴Texas A&M University, Department of Geology and Geophysics, College Station, TX, USA

> GSA South-Central Meeting 2017 San Antonio, TX

*Corresponding author: wernett9@tamu.edu

Coastal Geomorphology

"It is essential to understand this geologic framework before attempting to model the large-scale behavior of these types of coastal systems."

(Riggs et al, 1995)

Padre Island National Seashore (PAIS)

Alongshore Morphometrics

Time-series vs. Spatial-series

(see Wernette et al, 2016 Geomorphology)

CWT modelled using *biwavelet* R package (Gouhier et al. 2004) Wernette et al. (in prep) *Earth Surface Processes and Landforms*

Peak Spectral Density

White noise (slope ~ 0) Pink noise (slope ~ 1) Red noise (slope ~ 2)

Shoreline change (long-term) slope = 2.27

SA&M

 $-\mathbf{E}$

Surface morphometrics slope ~ 1

WTC modelled using *biwavelet* R package (Gouhier et al. 2004) Wernette et al. (in prep) *Earth Surface Processes and Landforms*

 $\mathbf{A}\mathbf{M} \mid \mathbf{T}\mathbf{E}\mathbf{X}\mathbf{A}\mathbf{S} \mathbf{A}^{\mathbf{k}}\mathbf{M}_{\mathbf{U} | \mathbf{V} | \mathbf{E} | \mathbf{R} | \mathbf{S} | \mathbf{I} | \mathbf{U} | \mathbf{Y}}$

WTC modelled using *biwavelet* R package (Gouhier et al. 2004) Wernette et al. (in prep) *Earth Surface Processes and Landforms*

Bicoherence

 $\prod_{U \in V} | \underset{U \in V}{\text{TEXAS}} A \stackrel{\text{A}}{\underset{V \in V}{\text{A}}} A \stackrel{\text{A}}{\underset{V \in V}{\text{A}}} M$

Bicoherence modelled after Elsayed (2006a, b) Wernette et al. (in prep) *Earth Surface Processes and Landforms*

ARFIMA Modelling

- Autoregressive fractionally-integrated moving average (ARFIMA) (Fraley et al, 2012)
- Evaluate short- and long-range dependencies (SRD and LRD)
 - (*p*, *d*, *q*) model:
 - $p \rightarrow SRD$ (autoregressive)
 - $d \rightarrow LRD$
 - $q \rightarrow \text{SRD}$ (moving average)

ARFIMA modelled using *fracdiff* R package (Frayley et al. 2012) Wernette et al. (in prep) *Marine Geology*

Directional Dependency

PAIS Development

Wernette et al. (in prep) Continental Shelf Research

.....

Wernette et al. (in prep) Continental Shelf Research

WILLIAM .

Framework Geology Context

Alongshore Current (direction of sediment transport gradient)

Baffin Bay seismic profile (Simms et al, 2010)

PAIS Development

Wernette et al. (in prep) Continental Shelf Research

.....

Barrier Island Geomorphology

Geologic Framework

- Spatial variations in framework geology affect dune morphology
 - Influence barrier island transgression
 - Persist through time
- Directional dependencies
 possible

References

- Anderson, J.B., D.J. Wallace, A.R. Simms, A.B. Rodriguez, R.W.R. Weight, and Z.P. Taha. 2016. Recycling Sediments between Source and Sink During a Eustatic Cycle: Systems of Late Quaternary Northwestern Gulf of Mexico Basin. *Earth-Science Reviews* 153, 111-138.
- Elsayed, M.A.K. 2006a. A Novel Technique in Analyzing Non-Linear Wave-Wave Interaction. *Ocean Engineering* 33, 168-180.
- -----. 2006b. Wavelet Bicoherence Analysis of Wind–Wave Interaction. Ocean Engineering 33, 458-470.
- Fisk, H.N. 1959. Padre Island and Lagunas Madre Flats, Coastal South Texas. *Second Coastal Geography Conference*, 103-151.
- Fraley, C., F. Leisch, M. Maechler, V. Reisen, and A. Lemonte, 2012. Fracdiff: Fractionally Differenced Arima Aka Arfima(P,D,Q) Models, R package version 1.4-2 ed.
- Gouhier, T.C., A. Grinstead, and V. Simko, 2016. Biwavelet: Conduct Univariate and Bivariate Wavelet Analyses, 0.20.7 ed.
- Houser, C., P. Wernette, E. Rentschlar, H. Jones, B. Hammond, and S. Trimble. 2015. Post-Storm Beach and Dune Recovery: Implications for Barrier Island Resilience. *Geomorphology* 234, 54-63.
- Sallenger, A.H. 2000. Storm Impact Scale for Barrier Islands. Journal of Coastal Research 16, 890-895.
- Simms, A.R., N. Aryal, L. Miller, and Y. Yokoyama. 2010. The Incised Valley of Baffin Bay, Texas: A Tale of Two Climates. *Sedimentology* 57, 642-669.
- Weise, B.R. and W.A. White. 1980. Padre Island National Seashore: A Guide to the Geology, Natural Environments, and History of a Texas Barrier Island. Texas Bureau of Economic Geology, 94
- Wernette, P., C. Houser, and M.P. Bishop. 2016. An Automated Approach for Extracting Barrier Island Morphology from Digital Elevation Models. *Geomorphology* 262, 1-7.

Acknowledgements

- National Park Service
 - James Lindsay, Travis Clapp
- Funding partially provided by Texas A&M University College of Geosciences National Science Foundation Texas Sea Grant.
- Data was collected under the following National Park Service Research Permits: #PAIS-2015-SCI-0004 #PAIS-2016-SCI-0003 #PAIS-2016-SCI-0014

Assessing the Role of Framework Geology on Barrier Island Geomorphology

Phillipe Wernette^{1*}, Chris Houser², Bradley Weymer³, Mark Everett⁴, Michael P. Bishop¹, and Bobby Reece⁴

¹Texas A&M University, Department of Geography, College Station, TX, USA ²University of Windsor, Department of Earth and Environmental Sciences, Windsor, ON, Canada ³GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany ⁴Texas A&M University, Department of Geology and Geophysics, College Station, TX, USA

> GSA South-Central Meeting 2017 San Antonio, TX

*Corresponding author: wernett9@tamu.edu