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The Himalaya-Tibetan (HT) orogenic system is a result of continental collision
between India and Asia since the Eocene (ca. $5-50 Ma) and is comprised of
four tectonostratigraphic sequences separated by faults and shear zones

STRUCTURE &
. GEODYNAMICS



This study focuses on two prevailing models for the evolution of the Himalayz
orogen: critical taper wedge extrusion and gravity-driven lateral mid-cr
flow (channel flow)
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Resolving uncertainties regarding gneiss dome evolution leads to richer
understanding of how the middle crust accommodates shortening in large
collisional systems
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Figure 2. Diagrammatic cross section through Himalaya and southern
Tibet showing (1) thrust faulting along MCT (or MBT), (2) normal fauit-
ing within Higher Himalayas, and (3) backthrusting near Tsangbo su-
ture zone. Kinematic relationships imply that shallow wedge of crustal
material must have moved southward relative to both India and Tibet.
Wedge is bounded above by north-dipping normal fault(s) (2) and
below by north-dipping thrust faults, possibly but not necessarily MCT
or MBT (1). Geometry shown at depth is speculative.

Burchfield and Royden, 1985
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Uncertainties on the origin of North Himalayan gneiss domes are due to poor
constraints on the deep crustal relationships among the MCT, STD, and Grez
Counter Thrust (GCT)
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Uncertainties on the origin of North Himalayan gneiss domes are due to poor
constraints on the deep crustal relationships among the MCT, STD, and Grez
Counter Thrust (GCT)

MAIN

CENTRAL
THRUST Lower GHS

— — — —
- e
—

(9]
=
L

ca. 15 Ma

Elevation (km)

STRUCTURE &
. GEODYNAMICS



Uncertainties on the origin of North Himalayan gneiss domes are due to poor
constraints on the deep crustal relationships among the MCT, STD, and Grez
Counter Thrust (GCT)
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In one model for the evolution of Kangmar Dome, cooling histories are
interpreted to be a result of thrusting upward and southward over a north
dipping ramp above cold Tethyan sediments
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Models of thrust emplacement for a Mohr-Coulomb material show temperature
distributions consistent with extension above the thrust

max. thrust rate = 35 km Myr! t = 0.0 Myr, displacement = 0 km
thrust rate = 50 km Myr’ t=13.0 Myr, displacement = 200 km
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Models of thrust emplacement for a Mohr-Coulomb material indicate normal
fault development

Effective Total Strain Rate
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Brittle-to-ductile transition is modeled using combined Drucker-Prager/
Mises stress criterion

 Elastic behavior

1+v v T
Eij = ( 7 ) gij — Etrace (0) i)

Drucker-Prager

* Brittle behavior

Tpp = CCOS@ + p' sing

» Viscous time-dependent deforr

Stress State 1: Elastic Region (no update)
Stress State 2: Updated using Von Mises
Stress State 3: Updated using Drucker-Prager
Stress State 4: Updated using Drucker-Prager
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Thermal steady state is approached starting at 60 million years
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A fully coupled 2-D model of a large, hot collisional orogen with upper-to-
crust mechanical and thermal properties is used to monitor thermal effe
heat transport
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Rheologically weak middle crust presents difficulties in performing numerical
experiments but preliminary results indicate potential for gneiss dome evolution
and channel development
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Understanding gneiss dome evolution leads to richer understanding of how the
middle crust accommodates shortening in large collisional systems
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