Multidisciplinary microscopy course for undergraduate research students in the Natural Sciences

Brittani D. McNamee¹ and James Perkins²

¹Department of Environmental Studies, University of North Carolina Asheville ²Department of Physics, University of North Carolina Asheville

UNCA Microscopy Courses: A Brief History

2004: SEM purchased through NSF MRI/RUI grant

2005 – 2012: SEM prep and Forensics courses taught by Bill Miller (ENVR) and Herb Pomphrey (BIOL)

2013 – present: "Methods in Microscopy", 1-credit SEM prep course taught in Fall by Dr. Langille (ENVR), Dr. Perkins (PHYS), and/or Dr. McNamee (ENVR)

Fall 2016: "Methods in Microscopy" expanded to 3-credits and include instruction of light microscopy and X-ray diffraction

"Methods in Microscopy"

1-credit course	3-credit course
does <u>not</u> count towards instructor course load	does count towards instructor course load
meet for 3-hr lab for 1 st 6 weeks	meet for 2.5 hr lecture and 2.5 hr lab each week
SEM	SEM and other electron microscopes, XRD, and light microscope
assignments include portfolio, practicum, and presentation of research project at UGR symposium	assignments include lab worksheets, portfolio, practicum, project abstract, presentation of research given during Finals
6-9 enrollment with 1 student from Warren Wilson College	13 enrollment

UGR Projects using SEM

- Identification of minerals in sulfide body within granite host at North Buncombe Quarry in Western North Carolina. *M. Daniels and B. Governo (2017)*
- Mapping garnet compositions in the Ashe Metamorphic Suite to show garnet thermal history. J. Corradino (2017)
- Growing Silver Nanowires. P. Friel (2016)
- Synthesis and Characterization of Titanium Dioxide Nanoparticles. R. Jacques (2016)
- Mineralogical studies of medium to high grade metamorphic rocks at Mount Mitchell State Park, North Carolina, USA. A. Coburn (2016)
- Mineral phase identification of Hendersonville Gneiss at Chimney Rock State Park, North Carolina. *K. Wright (2014)*

Calculate optimal resolution at different light wavelengths and accelerating voltages.

celerating voltage, V	1 kV	10 kV	
Electron velocity, v (in m/s) $eV = \frac{V_2}{2} m_e v^2$	V= (e: Y); me = 1.87E m/s	= 5.9 E 7 m/s	=1.03 E ^{.8} m/s
Electron momentum, p (in kg·m/s) $\hat{p} = rm \cdot V$	9.11E-31. V = 1.70E-23 Kar	= 5.37 6-23	=9.38 E -23
De Broglie wavelength, $$\lambda_{\text{de Broglie}}$$ (in nm)	$\frac{h}{P} \neq 10^{-9}$ = 0.0390 nm	0.0123 000	= 0.00706 nm

wave	UV light	Yellow light	Red light	1 kV electrons	10 kV electrons	30 kV electrons
λ (in nm)	250 nm	590 nm	750 nm	0.03 00 000 (from above)	0.0123 nm (from above)	0.0070 Grim (from above)
NA (unitless)	1.4	1.4	1.4	-		-
Working distance, f	-		-	5.mm	5 mm	5 mm
Final aperture radius, r	-		-	50 µm	50 µm	50 µm
Resolution, d (in nm)	250/2(1.4) = 89.3 m	=210.7 mm	= 267.9 cm	0.0390 2(5%) d=0.00196	0.0183 2(10) =6.154-4	0.00706 2 (10) = 5.535-4

Calculate Z_{avg} of different materials in a backscattered electron (BSE) image.

15.0kV 100µm WD11mm JE NI COMP

calcite $CaCO_3$ tremolite $Ca_2Mg_5Si_8O_{22}(OH)_2$ talc $Mg_3Si_4O_{10}(OH)_2$

photo by B. McNamee

Calculate and compare weight percents of elements in minerals (ideal amounts) to observed peak heights in energy dispersive spectra (EDS).

spectra from Mineralogy and Optical Mineralogy textbook DVD by M.D. Dyar, M.E. Gunter, and D. Tasa (2008)

Identify optical properties of quartz and an unknown mineral using a polarized light microscope.

photos by N. Brown

Identify mineral phases from X-ray diffraction patterns using WebMineral's online XRD peak

database.

quartz from CrystalDiffract database

Scanning electron microscope parameters for imaging insects

T. Elliott (previous semester)

Identification of unknown blue mineral found in quartzite cliffs of Sauratown Mountains, NC Piedmont

N. Brown

Chemical analysis of lab sample of a kidney stone

T. Dawson

1mm

Electron Image 1

Cement and aggregate relationships in coal fly ash concrete

B. Strausborger

What exceeded our expectations?

• Explore interdisciplinary uses of each instrument.

• Explore integration of different analyses.

Encourage students to work on a research project.

What were the challenges?

- Increased enrollment created large lab groups or lab groups rotating every other week.
- Increased problems with equipment (or decreased troubleshooting time between users?)
- Time/lab management for 13 students and 2 professors from 3 different departments.

What do we want to do in the future?

- Continue the interdisciplinary approach.
- Alternate offering 1-credit option and 3-credit option.
- Tweak course structure by incorporating "Kanban" concepts.
- Make the course sustainable at UNCA.

Det Spot HV Mag WD Etd 2.0 30.0 kV 221546x 4.75 mm

C. A.S.

Tha

Thank you!

500 µm

Det

Det Spot HV Mag WD Etd 7.0 10.0 kV 1358x 10.52 mm

