Southeastern Section - 66th Annual Meeting - 2017

Paper No. 7-2
Presentation Time: 8:00 AM-12:00 PM


TURNER, Ashley E., College of Charleston, Charleston, SC 29424 and VULAVA, Vijay M., Geology and Environmental Geosciences, College of Charleston, Charleston, SC 29424,

In recent years, pharmaceutical drugs have become of increasing concern to the health of our environment. As a result of wastewater treatment plant discharge and various sources of surface runoff, pharmaceuticals can be found in trace amounts in our most common water resources. Sildenafil, a drug marketed to treat erectile dysfunction, is amongst the top 20 most prescribed pharmaceutical products in the U.S. Sildenafil is a complex polar organic molecule with multiple amine functional groups, which gives it acid-base functionality. The most common pKa of this molecule is approximately 6.0 and water solubility ranges from 3.5 to 4.6 mg/L.

The aim of this project is to examine the sorption and transport behavior of sildenafil in natural organic matter- (OM) and clay-rich soils. Soils used for this study were collected from undisturbed forested areas in Francis Marion National Forest, Charleston, SC. A series of batch sorption isotherm and column transport experiments were conducted with these soils. Sildenafil was analyzed using high performance liquid chromatography (HPLC) technology.

Batch sorption isotherm experiments produced linear data for both OM- and clay-rich soil types. The data shows that sildenafil sorbs more strongly to the clay-rich soils than to the OM-rich soils. This suggests that sildenafil behaved as a cation and preferentially sorbed with the negatively-charged clay minerals. The transport behavior of sildenafil as determined by experiments with soil-packed glass chromatography columns confirmed this behavior. The resulting breakthrough curves show that sildenafil is strongly retarded in clay-rich soils. Our studies do not show degradation or transformation of sildenafil in soils. The results from this study have strong implications for environmental management of pharmaceutical chemical effluents and disposal.