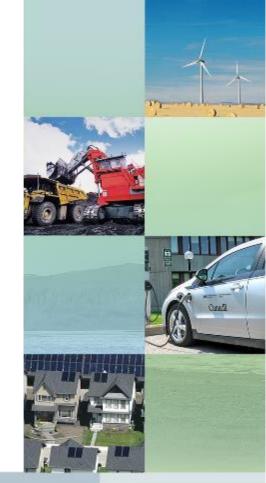
Towards Reducing Wellbore Leakage via a Novel Wellbore **Biomineralization Technology** based on Microbially Induced Carbonate Precipitation (MICP)


WHITAKER, Justin¹, HEAGLE, Dru¹, WIGSTON, Andrew¹, VANAPALLI, Sai² and FORTIN, Danielle³

1. Natural Resources Canada / Government of Canada, CanmetENERGY-Ottawa

2. Civil Engineering, University of Ottawa

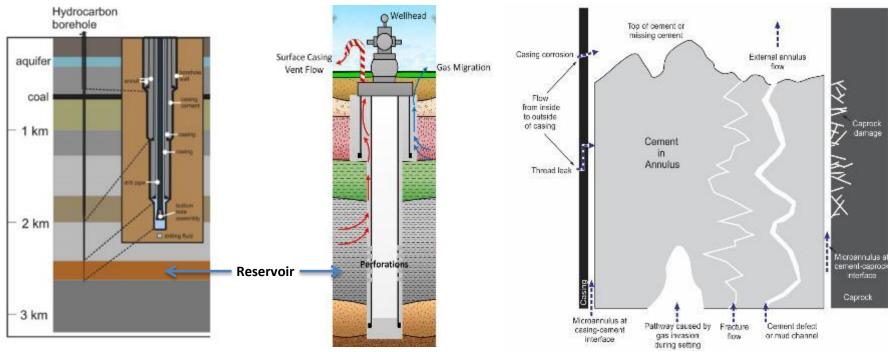
Canada

3. Earth and Environmental Sciences, University of Ottawa

Natural Resources Canada

Outline

- Oil and Gas Wells
 - Build and Leakage
 - Typical Repair
- Biomineralization
 - MICP
 - Shallow Depth
 - Deep Depth



Canada

Oil and Gas Wells

Build and Leakage

Fig 1. Hydrocarbon well drilling (*Modified from Davies et al., 2015*)

Ressources naturelles

Canada

Natural Resources

Canada

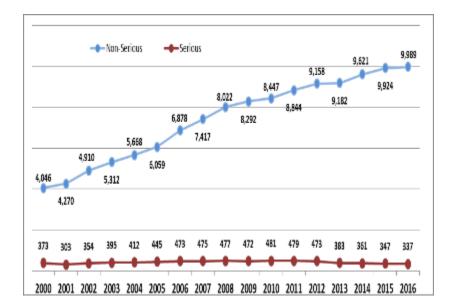
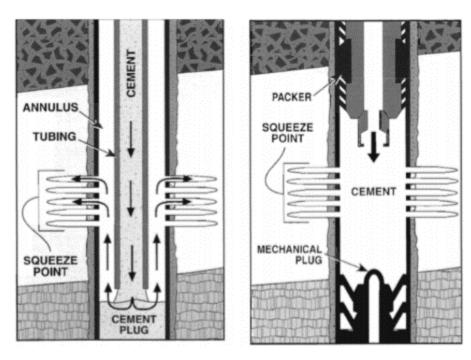

Fig 2. Hydrocarbon and gas migration (*Modified from Hardie & Lewis, 2015*)

Fig 3. Wellbore damage and routes for fluid leak (Carrol, Int. J. Greenh. Gas Con., 2016)

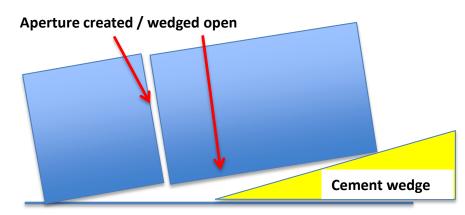
Oil and Gas Wells

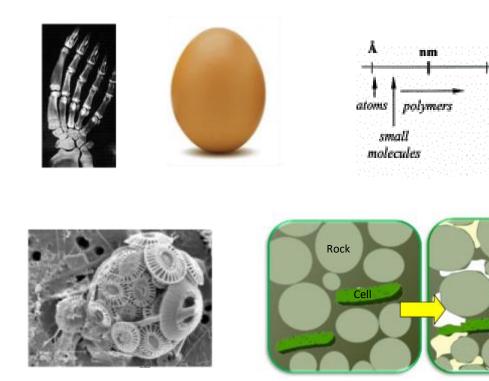
Fig 5. Hydrocarbon well drilling (*Noomen et al., Ecol. Inform., 2012*)


Fig 4. Hydrocarbon well drilling (Alberta Energy, 2016)

Oil and Gas Wells

Typical Repair




Fig 6. Bradenhead (left) and packer (right) squeeze (Van Dyke, 1997)

Natural Resources Ressources naturelles Canada Canada Fig 7. Cement 'wedge' effect (Modified from Dusseault et al., 2014))

Biomineralization MICP

Vs. Amorphous Formation

https://www.youtube.com/watch?v=hq_k3QNwwfg

μm

(?) name

bacter

viruses

Biofilm

CaCO₃

bacteria archea

eukarva

en mi

Canada

Natural Resources Ressources naturelles Canada

6

Biomineralization MICP

	Reaction	Substrate	Product
	Ureolysis	Urea	2NH ₄ + CO ₃
\rightarrow	Denitrification	NO3	N2
	Sulfate Reduction	SO ₄	H ₂ S
	Iron Reduction	Fe(III)	Fe(II)
	Photosynthesis	HCO ₃	CO ₃

Table 1. Alkalinity and CO₃ generating microbial processes (Adapted from Graddy, et. al., ES&T, 2018)

Canada

Fig 10. Biomineralization of wellbore (Phillips et al., ES&T, 2018)

MICP – Shallow Depth

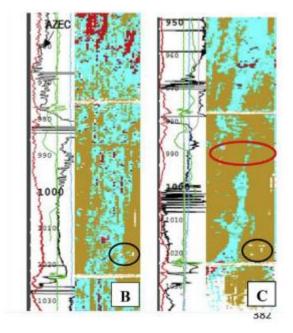


Fig 8. Analog fractured wellbore system (Phillips et al., 2015)

Fig 9. Field-scale wellbore repair before (b) and after (c) MICP injection (Modified from Phillips et al., J. Pet. Sci. Eng., 2018)

Natural Resources Ressources naturelles Canada

Canada

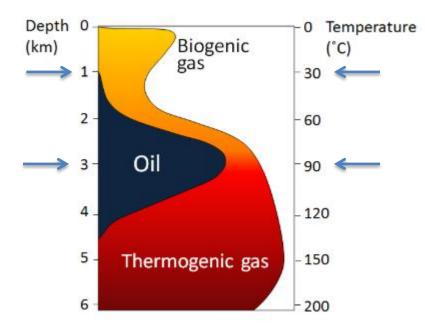


Fig 10. Hydrocarbon distribution at depth and temperature (Steven Earle, Physical Geology, Chapter 20.3)

Canada

Ressources naturelles

Natural Resources

Canada

MICP – Deep Depth

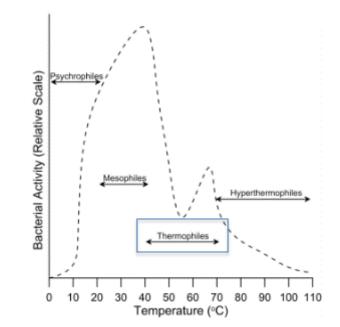


Fig 11. Bacterial activity in wells as a function of temperature (Katz, Open Geology Journal, 2011)

Biomineralization MICP – Deep Depth

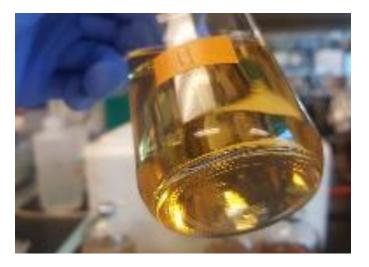
- Identify candidate bacteria for deep depth MICP
- Test candidates at elevated temperatures and salinities
- Confirm top candidate(s) for carbonate mineral production
- Explore growth under pressure

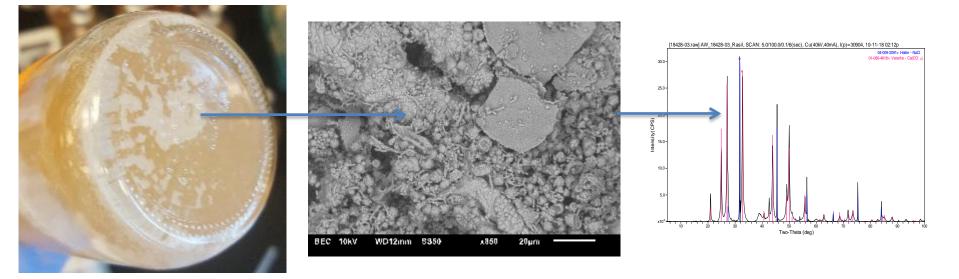
Character	1	2	3	4	5	6	7	8	9	10	11	12	13
Temperature Range (°C):													
Liquid	10-35	10-35	40-65	40-65	45-65	40-70	45-70	45-70	40-65	10-50	45-65	30-65	20-40
Solid	10-35	10-35	45-65	40-70	40-70	40-70	40-75	40-70	40-70	10-50	40-65	30-65	15-40
Optimal	25	25	55	60	55	60	60	60	60	45	60	60	35
NaCl range (%)	0-5	0-5	0-3	0-1	0-3	0-3	0-5	0-3	0-5	0-20	0-3	0-5	0-3
Hydrolysis of Urea:													
Stuart's Broth (Strong)	+	+	-	-	-	-	-	-	-	w	-	-	-
Christensen's Broth (Weak)	+	+	-	v	v	v	-		-	w	-	w	-
Reduction of Nitrate	+	+	+	+	+	+	+	+	+	-	+	+	+
Gas Produced	-	-	-	-	v	v	+	+	-	-	-	-	+
Anaerobic growth	-	-	+	+	+	+	+	+	+	-	+	+	+
Final pH with NO₃*	6.70	6.85	6.40	6.40	6.75	6.90	7.90	7.15	6.10	6.70	6.25	6.20	8.20

Table 2. Physiological characteristics of Geobacillus, Sporosarcina, Gracilibacillus and Anoxybacillus

Canada

MICP – Deep Depth

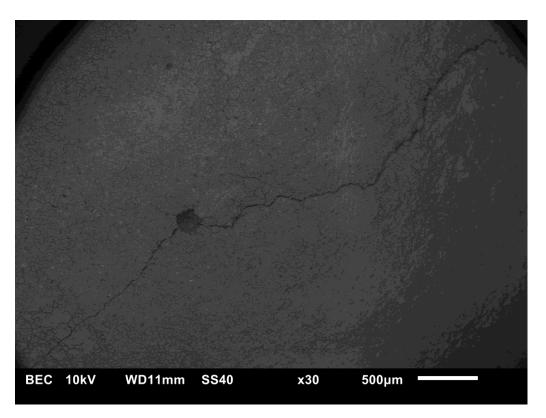



Fig 12. CaCO₃ production trials with G. subterraneus and *G. thermodentrificans* (60°C, 48h)

Canada

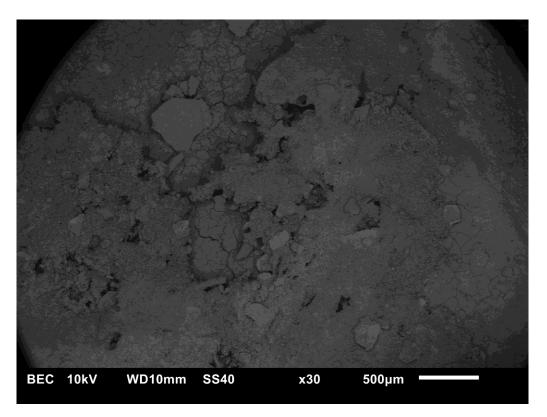
MICP – Deep Depth

Fig 13. CaCO₃ production trials with *G. subterraneus* and *G. thermodentrificans.*


MICP – Deep Depth

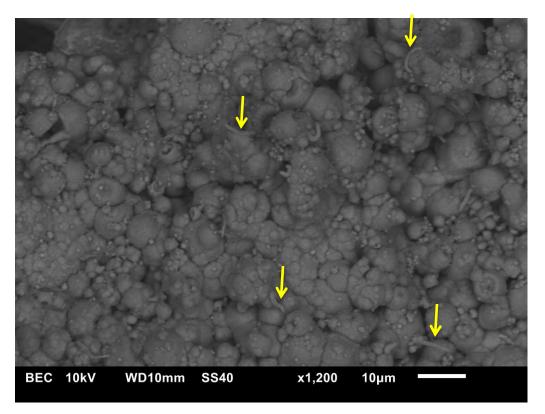
Canada

MICP – Deep Depth



Canada

MICP – Deep Depth



Canada

MICP – Deep Depth

Canada

MICP – Deep Depth

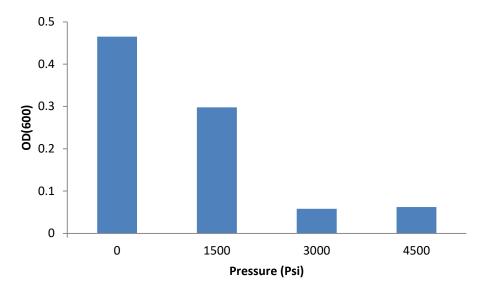


Fig 15. Growth of G. thermodentrificans at wellbore-like pressures (50°C, 48h)

Fig 14. Pressure reactor apparatus

Matural Resources Ressources naturelles Canada Canada

Biomineralization MICP – Deep Depth

- Identify candidate bacteria for deep depth MICP
- Test candidates at elevated temperatures and salinities
- Confirm top candidate(s) for carbonate mineral production
- Explore growth under pressure
- Investigate metabolic pathway and quantify byproducts overtime (optimize MICP)
- Test in wellbore analog system

Questions?

Contact: Justin.Whitaker@canada.ca

Canada

