The implications and limitations of Phreatic Overgrowths of Speleothems as indicators of Sea Level: Quintana Roo, Mexico

Aubri A. Jenson¹, Benjamin F. Schwartz^{1,2}, Yongli Gao³, Lijun Tian³, Yunxia Li^{3,4}

¹Dept. of Biology, Texas State University, San Marcos, TX ²Edwards Aquifer Research and Data Center, San Marcos, TX ³Center for Water Research, Department of Geological Sciences, University of Texas at San Antonio, San Antonio, TX ⁴Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Overview

Geologic History of Quintana Roo, Mexico Research Framework

U-Th Analysis of Phreatic Overgrowths of Speleothems Limitations and Sources of Uncertainty Implications for Sea Level and Tectonic History

Coastal Karst Conceptual Model

- Freshwater lies on denser saltwater
- Mixing results in undersaturation with respect to calcite
- Most aggressive conduit development occurs along halocline
- Cave elevations should correspond to changing sea levels over time

- The Halocline is often sharp, which reduces mixing
- Wall notches should indicate past sea level stands
- Dissolution may be slower than modeled, as evident by columns

Underwater caves in Quintana Roo: 1,400 km mapped since 1970's

- Depth of 0-20 m below sea level; thought to be forming today at halocline
- Laterally extensive, flat floors and ceilings consistent with dissolution along halocline and/or bedding planes
- Most work has focused on these caves for recent climate history

Dry caves in Quintana Roo: 260 km mapped since 2000's

- Depth of 0-20 m above sea level, shallow with frequent collapse
- Similar passage dimensions, & morphology suggest similar origins to underwater caves
- Provide opportunity to collect data without complex logistics or time constraints

- Sea level has only been higher than today at brief times in the geologic history of Quintana Roo (2 ma at least)
- Either caves formed very rapidly during those times...

... or they formed deeper and have been lifted to their modern elevation

Estimated Global Sea Level

Research Framework

Assumptions of Speleogenesis:

- Cave formations could be very old
- Expect less cave development deeper in today's setting
- Surface erosion rate similar to uplift rate
- POS collected higher than sea level records indicate

Phreatic Overgrowths on Speleothems (POS)

- Deposited where CO₂ outgasses at the water table
- Provides sea level proxy in low gradient systems
- Exterior crusts can be dated by U-Th methods (500 ka)
- Interior stalactites provide minimum age of cave passage

Sistema Jaguar

- Representative cave of the area
- Allows observations of the aquifer from 7 km inland to coastline
- Elevations 5-20m above sea level

Sample Locations and Elevations relative to the Water Table

Sample Ages and Elevations above MSL

Data from Spratt et al., 2016

Tropical Karst Denudation Rates

	Max SL Rate		
Location	(mm/ka)	Method	Source
Kikai jima, Japan	205	Pedestal	Matsukura, 2007
Aldabra atoll, Indian Ocean	260	Pedestal	Trudgill, 1976
	200	Laboratory testing	Ford et al, 1988
	175	Modeling estimate	Sheen, 2000
Bikini atoll, Marshall Islands	300	Micro Erosion Meter	Revelle and Emery, 1957
Victoria, Australia	300	Micro Erosion Meter	Gill and Lang, 1983
Grand Cayman Isl., Bahamas	177	Micro Erosion Meter	Spencer, 1985

- Faster at low temperature
- Increases with rainfall
- Accelerated by pCO₂
- Humid tropics ~200 mm/ky

Pleistocene Coral

- Minimum values with range of depth for coral growth
- Denudation not considered in modern coral elevation

Tectonic uplift?

Tectonic subsidence?

Conclusions

• Caves cannot have formed during the Pleistocene high-stands based on a speleothem age of 600 ka indicating existing passage

 Assuming consistent low gradients, elevation differences in POS indicate uplift of the Yucatan Peninsula ~350 mm/ka

 Denudation 0f 200 mm/ka would result in apparent uplift of 150 mm/ka

Acknowledgements

- Geological Society of America
- National Speleological Society
- Lions Club International, San Marcos Chapter
- UT Grotto and Paamul Grotto

THE GEOLOGICAL SOCIETY OF AMERICA®

 Lorena Martinez, Peter Sprouse, Christine Lowe, Barbara Luke, Nick Banks, Andy Edwards, Cait McCann, Jessica Gordon, Edgar Iglesias, and many others for their assistance and company in the field.

Questions?

U-Th Ages of Interior Stalactites on North Atlantic Sea Level Curves

Data from Spratt et al., 2016

POS U-Th ages on North Atlantic Sea level curves

Thousands of Years Before Present

Data from Spratt et al., 2016