Comparison of meteoric and \textit{in situ}-produced 10Be depth profiles

Evaluating erosion rates, meteoric 10Be flux, and the steady state assumption

Clow, T.1, Willenbring, J.K.1,2, Schaller, M.3, Blum, J.4, von Blanckenburg, F.2
10Be nuclide production and depth profiles

- Differences in production rate
- Delivery mechanism
- Environmental conditions

Motivation

- Meteoric 10Be easier to measure
- Applicable to a much wider range of environments than *in situ*
- Possibility of using archives to determine rates from the past

Willenbring & von Blanckenburg (2014)
10Be nuclide production and depth profiles

Constrain:
- depositional age
- rates of denudation/erosion
- evaluate steady-state conditions
- 10Be$_{\text{met}}$ flux

Top down (meteoric) vs. Bottom up (in situ)

Do they capture the same signal?

Schaller et al. (2009a)
An ideal situation for comparison

Pinedale & Bull Lake Terminal Moraines

Well characterized:
- Grain sizes
- Weathering indices
- Soil properties

Independently constrained:
- Landform ages
- Denudation rates

Clow et al. (almost submitted)
In situ 10Be depth profiles, rates

- Mixing depth -- Bull Lake incomplete?
- Ages comparable
- Constant or transient denudation
- Remove weathering component (Schaller et al. 2009b)

Recalculated average effective erosion rates (mm ky$^{-1}$)

<table>
<thead>
<tr>
<th></th>
<th>Pinedale</th>
<th>Bull Lake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>12.6</td>
<td>6</td>
</tr>
<tr>
<td>Transient</td>
<td>26.9</td>
<td>10</td>
</tr>
<tr>
<td>Average</td>
<td>19.7</td>
<td>8</td>
</tr>
</tbody>
</table>

Schaller et al. (2009a)
Meteoric ^{10}Be depth profiles

- Rapid exponential decay
- No correlation with clay content
- Inherited concentrations
 - Incomplete glacial resetting likely
- Lack of soil mixing signal
 - Differing diffusion coefficients?
 - Swamping due to advection?

Clow et al. (almost submitted)
Erosion rate calculations

We calculate the local erosion rate via two methods

\[E = \frac{Q - (I \lambda)}{N_{\text{surf}} \rho} \]

'Inventory Method' (Brown, 1987)

\[E = \frac{Q}{N_{\text{surf}} \rho} \]

'Nsrf Method' (Willenbring & von Blanckenburg, 2010)

However, an accurate estimation of \(^{10}\text{Be}_{\text{met}}\) flux is crucial for obtaining accurate erosion rates.
Erosion rate calculations

We calculate the local erosion rate via two methods:

\[E = \frac{Q - (I/\lambda)}{N_{\text{surf}}} \]

‘Inventory Method’ (Brown, 1987)

\[E = \frac{Q}{N_{\text{surf}}} \]

‘Nsurf Method’ (Willenbring & von Blanckenburg, 2010)

However, an accurate estimation of \(^{10}\text{Be}_{\text{met}}\) flux is crucial for obtaining accurate erosion rates.

Heikkila & von Blanckenburg (2015)

\[= 1.5 \times 10^6 \text{ at/cm}^2/\text{yr} \]
Erosion rate calculations

We calculate the local erosion rate via two methods:

\[
E = \frac{Q - (\lambda I)}{N_{surf} \rho} \quad \text{Inventory Method (Brown, 1987)}
\]

\[
E = \frac{Q}{N_{surf} \rho} \quad \text{'Nsurf Method (Willenbring & von Blanckenburg, 2010)}
\]

However, an accurate estimation of \(^{10}\text{Be}_{\text{met}}\) flux is crucial for obtaining accurate erosion rates.

Heikkila & von Blanckenburg (2015)

\[= 1.5 \times 10^6 \text{ at/cm}^2/\text{yr}\]

Graly et al. (2011)

\[= 0.55 \times 10^6 \text{ at/cm}^2/\text{yr}\]
Factors influencing Graly flux estimate

Modeled precipitation rates ~200% higher during LGM (Birkel et al., 2012)

Relative paleointensity over last 140 ky was 20-40% of present, on average (Pigati and Lifton, 2004)

Flux rates 27% and 38% higher for Pinedale and Bull Lake, respectively.
Profiles have surficial pH of ~5.5; must consider retention of Be on calculated erosion rates using von Blanckenburg et al. (2012) equation:

\[
E_{\text{erosion}} = E_{\text{erosion}} - \frac{Q}{Kd}
\]

\[
Q = 0.283 \, \text{m/yr (modern precip. rate)}
\]

\[
Kd = \sim 1-100 \, \text{L/g (Boschi & Willenbring, 2016)}
\]

This leads to an erosion rate correction of **-0.7 to -1.8%**

Even if we double our estimate for Q, it is still < -3.5%
Flux and erosion rate comparison

From predicted flux of Graly et al. (2010)
- Pinedale: 16 mm ky$^{-1}$
- Bull Lake: 6.5 mm ky$^{-1}$

20% Off

From Heikkila & von Blanckenburg (2015)
- Pinedale: 43.8 mm ky$^{-1}$
- Bull Lake: 18 mm ky$^{-1}$

220% Off

From best-fit flux of 0.67×10^6 at/cm2/yr
- Pinedale: 19.6 mm ky$^{-1}$
- Bull Lake: 8 mm ky$^{-1}$

Within 1%

Rates between N_{surf} and Inventory method are virtually identical

Clow et al. (almost submitted)
The steady state assumption

Erosion rates from each method identical

Why would the rates match?

- Steady state has been achieved and Kd does not have an appreciable effect

or

- $^{10}\text{Be}_{\text{met}}$ adsorption is affecting both the surface and the depth profile the same
The steady state assumption

Erosion rates from each method identical

Why would the rates match?

Steady state has been achieved and K_d does not have an appreciable effect

or

$^{10}\text{Be}_{\text{met}}$ adsorption is affecting both the surface and the depth profile the same
Conclusions

• Best-fit meteoric ^{10}Be flux of 0.67×10^6 at cm$^{-2}$ yr$^{-1}$
 • Falls within estimates of 0.5 and 1.5 $\times 10^6$ from other methods

• Meteoric ^{10}Be erosion rates of 19.6 mm ky$^{-1}$ and 8 mm ky$^{-1}$
 for the Pinedale and Bull Lake moraines, respectively
 • Agree remarkably well (±1%) with in situ-produced ^{10}Be erosion rates
 • Independent flux estimates lead to considerable range (-20% to +220%)

• No mixing signal observed in meteoric profiles

• Minimal (1-2%) loss of Be due to dissolution

• Steady state appears to have been achieved with this system
Acknowledgements

This work was made possible through the German Research Foundation Grant BL562/7 and an Alexander von Humboldt Postdoctoral Fellowship. Support for TC came from a Career grant to Willenbring from NSF #1651243.

References

Addi1onal Slides

Pigati and Lifton (2004)
Schaller et al. (2009)
Additional Slides

von Blanckenburg and Bouchez (2014)