

Comparison of meteoric and *in situ*-produced ¹⁰Be depth profiles

Evaluating erosion rates, meteoric ¹⁰Be flux, and the steady state assumption

Clow, T.¹, Willenbring, J.K.^{1,2}, Schaller, M.³, Blum, J.⁴, von Blanckenburg, F.²

¹⁰Be nuclide production and depth profiles

Willenbring & von Blanckenburg (2014)

Differences in production rate Delivery mechanism Environmental conditions

Motivation

- Meteoric ¹⁰Be easier to measure
- Applicable to a much wider range of environments than *in situ*
- Possibility of using archives to determine rates from the past

¹⁰Be nuclide production and depth profiles

Constrain:

- depositional age
- rates of denudation/erosion
- evaluate steady-state conditions
- ¹⁰Be_{met} flux

Top down (meteoric) *vs.* Bottom up (*in situ*)

Do they capture the same signal?

Schaller et al. (2009a)

An ideal situation for comparison

Pinedale & Bull Lake Terminal Moraines

Well characterized:

- Grain sizes
- Weathering indices
- Soil properties

Independently constrained: - Landform ages - Denudation rates

Clow et al. (almost submitted)

In situ ¹⁰Be depth profiles, rates

- Mixing depth -- Bull Lake incomplete?
- Ages comparable
- Constant or transient denudation
- Remove weathering component (Schaller et al. 2009b)

Recalculated average effective erosion rates (mm ky⁻¹)

	Pinedale	Bull Lake
Constant	12.6	6
ransient	26.9	10
Average	19.7	8

Meteoric ¹⁰Be depth profiles

- Rapid exponential decay
- No correlation with clay content
- Inherited concentrations
 - Incomplete glacial resetting likely
- Lack of soil mixing signal
 - Differing diffusion coefficients?
 - Swamping due to advection?

Erosion rate calculations

We calculate the local erosion rate via two methods

'Inventory Method' (Brown, 1987)

'Nsurf Method' (Willenbring & von Blanckenburg, 2010)

However, an accurate estimation of ¹⁰Be_{met} flux is crucial for obtaining accurate erosion rates

Erosion rate calculations

We calculate the local erosion rate via two methods

'Inventory Method' (Brown, 1987)

'Nsurf Method' (Willenbring & von Blanckenburg, 2010)

However, an accurate estimation of ¹⁰Be_{met} flux is crucial for obtaining accurate erosion rates

Heikkila & von Blanckenburg (2015)

= **1.5** x 10⁶ at/cm²/yr

Erosion rate calculations

We calculate the local erosion rate via two methods

'Inventory Method' (Brown, 1987)

'Nsurf Method' (Willenbring & von Blanckenburg, 2010)

However, an accurate estimation of ¹⁰Be_{met} flux is crucial for obtaining accurate erosion rates

Factors influencing Graly flux estimate

DrPawluk.com

Be mobility effects?

Profiles have surficial pH of ~5.5; must consider retention of Be on calculated erosion rates using von Blanckenburg et al. (2012) equation:

Erosion rate_(desorption) = Erosion rate - Q/Kd

Q = 0.283 m/yr (modern precip. rate)

 $Kd = \sim 1-100 L/g$ (Boschi & Willenbring, 2016)

This leads to an erosion rate correction of -0.7 to -1.8%

Even if we double our estimate for Q, it is still < -3.5%

Flux and erosion rate comparison

From predicted flux of Graly et al. (2010)			
Bull Lake : 6.5 mm ky ⁻¹	20% Off		
From Heikkila & von Blanckenburg (2015)			
Pinedale : 43.8 mm ky ⁻¹ Bull Lake : 18 mm ky ⁻¹	220% Off		
From best-fit flux of 0.67 x 10 ⁶ at/cm ² /yr			
Pinedale : 19.6 mm ky -' Bull Lake : 8 mm ky -1	Within 1%		

Rates between N_{surf} and Inventory method are virtually identical

Clow et al. (almost submitted)

The steady state assumption

Erosion rates from each method identical

Why would the rates match?

Steady state has been achieved and *Kd* does not have an appreciable effect

or

¹⁰Be_{met} adsorption is affecting both the surface and the depth profile the same

The steady state assumption

Erosion rates from each method identical

Why would the rates match?

Steady state has been achieved and *Kd* does not have an appreciable effect

or

¹⁰Be_{met} adsorption is affecting both the surface and the depth profile the same

<u>Conclusions</u>

- Best-fit meteoric ¹⁰Be flux of **0.67 x 10⁶ at cm⁻² yr⁻¹**
 - Falls within estimates of 0.5 and 1.5 x 10⁶ from other methods
- Meteoric ¹⁰Be erosion rates of **19.6 mm ky⁻¹** and **8 mm ky⁻¹** for the Pinedale and Bull Lake moraines, respectively
 - Agree remarkably well (±1%) with in situ-produced ¹⁰Be erosion rates
 - Independent flux estimates lead to considerable range (-20% to +220%)
- No mixing signal observed in meteoric profiles
- Minimal (1-2%) loss of Be due to dissolution
- Steady state appears to have been achieved with this system

Questions?

Acknowledgements

This work was made possible through the German Research Foundation Grant BL562/7 and an Alexander von Humboldt Postdoctoral Fellowship. Support for TC came from a Career grant to Willenbring from NSF #1651243.

References

Brown, L. (1987). 10Be as a tracer of erosion and sediment transport. *Chemical Geology: Isotope Geoscience section*, 65(3-4), 189-196.

Graly, J. A., Bierman, P. R., Reusser, L. J., & Pavich, M. J. (2010). Meteoric 10Be in soil profiles-A global meta-analysis. Geochimica et Cosmochimica Acta,

74(23), 6814-6829.

Heikkilä, U., & Von Blanckenburg, F. (2015). The global distribution of Holocene meteoric 10Be fluxes from atmospheric models. Distribution

maps for terrestrial Earths surface applications, GFZ Data Services, GFZ Potsdam, Germany, doi, 10.

Pigati, J. S., & Lifton, N. A. (2004). Geomagnetic effects on time-integrated cosmogenic nuclide production with emphasis on in situ 14C and 10Be. Earth and Planetary Science Letters, 226(1-2),

193-205.

Schaller, M., Ehlers, T. A., Blum, J. D., & Kallenberg, M. A. (2009a). Quantifying glacial moraine age, denudation, and soil mixing with

cosmogenic nuclide depth profiles. *Journal of Geophysical Research: Earth Surface, 114*(F1).

Schaller, M., Blum, J. D., & Ehlers, T. A. (2009b). Combining cosmogenic nuclides and major elements from moraine soil profiles to improve weathering rate estimates. *Geomorphology*, *106*(3-4), 198-205.

Willenbring, J. K., & von Blanckenburg, F. (2010). Meteoric cosmogenic Beryllium-10 adsorbed to river sediment and soil: Applications for

Earth-surface dynamics. *Earth-Science Reviews*, 98(1-2), 105-122

von Blanckenburg, F., Bouchez, J., & Wittmann, H. (2012). Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio. Earth and Planetary Science Letters, 351, 295-305.

Additional Slides

Pigati and Lifton (2004)

Additional Slides

Schaller et al. (2009)

Additional Slides

von Blanckenburg and Bouchez (2014)