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Perhaps the most fundamental observation in Earth science is that sedimentary
rocks often come in distinct layers that can be tens to hundreds of meters thick.

Each layer is evidence of a distinct environment with distinct fossils, formed
over millions of years. Then, in the blink of a geologic eye, the environment and
fossils suddenly change.

Mapping these changes worldwide, geologists have developed a time scale
gradually refining the precise times of these sudden transitions.
But what causes these sudden changes in environment?

Today | want to summarize the evidence suggesting that the majority of these
sudden transitions are caused by sudden warming, even within years and
sometimes lasting tens of thousands of years.
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What causes these sudden changes in environment?

PALEOZOIC

PERIOD |EPOCH AGE PERIOCD
a a a

CHANGHSINGIAN | 27} EDIACARAN
WUCHIAPINGIAN

260
¥ CAPITANIAN 750 NEOPRO- CRYOGENIAN
[ woroAN 1 TEROZOIC

| Basaltic eruptlons are most volumlnous N contlnental rift zones
' ,é?% ' \En, i" 7 ‘ ”“L = :§ VESOPRO | Coracian

SERPUKHOVIAN m

Major exploswe eruptlons are most numerous In subductlon Zones

L

A
RHYACIAN

T e — - FAMENNIAN
A L e .;.v'.'_-. s - - OROSIRIAN
J[.r . NS - L e e e e : PALEOPRO-
) - - TEROZOIC
= ”, .
>/ i\‘ - A
L)

The preva f rlftlng Versus subductlon
Is determined by plate tectonlcs

: FHUCTARIAR
Sudden warming is caused by basaltic lava flows covering = " KTAN

SANDBIAN 455 MESO-
461 ¥

hundreds to millions of km2. The more extensive the flow the T
greater the warming and the greater the sudden change

SIDERIAN

PALEO-
ARCHEAN

Slow, incremental cooling is caused by several major explosive,
aerosol-forming volcanic eruptions per century for millennia

CAMBRIAN*




Sudden warming is caused by basaltic lava flows that cover hundreds to millions of square kilometers of
land. The more extensive the sub-aerial flow the greater the warming and the greater the sudden change.

Slow, incremental cooling, on the other hand, is caused by several major explosive, aerosol-forming
volcanic eruptions per century continuing on for millennia.

Basalts are most voluminous in continental rift zones. Major explosive volcanic eruptions are most typical
related to subduction zones.

The prevalence of rifting versus subduction is determined by plate tectonics.

For example, snowball earth, in the Late Proterozoic may have been a time when subduction was
widespread, with little to no continental rifting.

The end of the Paleozoic, on the other hand appears to be a time when continental rifting became
prevalent in Siberia.

Continental rifting appears be initiated, in some cases, when a continent overrides a ridge-ridge-ridge
triple junction. The Columbia River Basalts appear to have formed this way from 17 to 14 million years ago.

Three of the largest basalt flows were contemporaneous with the end of the Paleozoic, the end of the
Triassic, and the end of the Mesozoic and the three largest known mass extinctions. These were also times
of major ocean acidification. Large volumes of sulfur dioxide emitted from basalts plus water vapor forms
sulfuric acid and sulfate is the most prevalent anion in the ocean after chlorine.



Snowball Earth appears to be the
result of widespread subduction
with no contemporaneous rifting
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The End of the Paleozoic 252 Ma
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Three of the largest flood basalts were contemporaneous
with three of the largest mass extinctions
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What about the correlation of CO,, with temperature?
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What about the correlation of CO,, with temperature?
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The globe has warmed one degree centigrade since 1970

But, greenhouse warming theory appears to be mistaken!

In fact, greenhouse warming theory is not even physically possible!
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The globe has warmed one degree centigrade since 1970
But, greenhouse warming theory appears to be mistaken!

In fact, greenhouse warming theory is not even physically possible!

Recognizing that warming
is caused by ozone depletion
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Increasing ocean heat content
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Ozone depleted by humans and by volcanic eruptions
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Major explosive volcanic Major effusive flows of basaltic

lava that cause net warming

eruptlons cause net cooling
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The footprints of climate change: Erratic sequences of rapid
warming followed by slow, incremental cooling over millenia
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Eocene Green River Formation in Wyoming
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Typically these basaltic lavas occur
at the end of geologic time units
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arge Igneous Provinces punctuate the geologic time scale
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Large Igneous Provinces punctuate the geologic time scale
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The blessing of oxygen isotope measurements, 680
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Volcanoes Rule Climate Change

Plate Tectonics Rules Volcanoes
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