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MATERIALS

• Body Size Data
• Measured skulls and femurs from primary literature

• Scaling equations
• Farlow et al. 2005 (femur length, etc.)

• Young et al. 2011 (cranial length)

• Habitat Codings (Terrestrial vs. Diving)
• Primary literature/compendia

• Range data
• Paleobiology Database

• Primary literature/compendia

• Martin et al. 2014 (marine croc diversity through time)
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MATERIALS

Bronzati et al. 2012, Hist. Bio.

Brochu 2012, Earth Environ. Sci. Trans. R. Soc. Edinburgh

• Supertree
• 329 species

• Have size and range 
data for ~250
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METHODS

• Time-scaled supertree using 

character-less tip-dating in 

MrBayes using fossil lineage 

ages as constraints

(thanks Dave Bapst!)
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COPE’S RULE?
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LEFT SKEWED IN AGGREGATE
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SKEWNESS THROUGH TIME?
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Aggregate Aquatic

Aggregate All
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SKEWNESS VARIES THROUGH TIME
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VS.
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OUwie

Body Size Optimum (𝜃)
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MODEL SUPPORT
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THEY GET BIGGER!
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VERY SIMILAR TO MAMMALS!

Gearty et al. 2018, PNAS
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…WITH EQUAL OR STRONGER 
SELECTION…
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…AND EQUAL OR LESS VARIANCE
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neutral buoyancy

protein availability

habitat area

thermoregulation

Modified from Gearty et al. 2018, PNAS
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neutral buoyancy

protein availability

habitat area

diet?

thermoregulation

Modified from Gearty et al. 2018, PNAS
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THERMOREGULATION?

• Crocs are ectothermic, but they still need to worry 

about losing heat to the surrounding water, especially 

when diving for long periods of time

• It would be great if we could build a similar energetics 

model as with the mammals, but the available feeding 

data is not as precise for crocs

• However, we do have experimental data on cooling and 

warming rates…
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THERMOREGULATION?

• Active blood flow to 

extremities during basking 

reduces time needed to 

warm up

• Cooling rate slows (relative 

to warming rate) at larger 

sizes due to thicker skin, 

larger surface area

• Increased benefits at larger 

size predicts left skewness
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THERMOREGULATION’S EFFECT ON 
DIVING TIME…

• Lung volume long held as 

constraint on diving time in 

crocodyliformes

• Thermoregulation is only 

more limiting at sizes smaller 

than 10 kg

• Also predicts left skewness
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CONCLUSIONS

• Despite a trend towards increasing sizes, crocodiles do not 

appear to be following Cope’s Rule

• Skewness is highly variable through time (at least in crocs)

• Implications for variable extinction/origination bias?

• Thermoregulation might impose a strong minimum size 

constraint in diving crocodyliformes, like in mammals

• While crocs may not be endothermic, they may still be impacted by 

heat loss due to its impact on diving capacity
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