GSA Annual Meeting – 2018 Indianapolis

Compositional Variation of Fe, Al, & F in Titanite

Bart J. Kowallis, Eric H Christiansen, Michael J. Dorais, Tony Winkel, Porter Henze, Lauren Franzen, and Haley Mosher – Brigham Young U.

Conclusions – Fe/Al ratios

- The atomic ratio of Fe/AI in titanite from both volcanic and plutonic rocks is typically close to 1:1 and almost always >1:2.
- Volcanic titanite compositions typically cluster more tightly in terms Fe, Al, and F than do titanite compositions from any other environment.
- Fe/Al ratios in titanite from peralkaline silica-undersaturated volcanic and plutonic rocks are typically >1:1.
- Titanite from metamorphic, hydrothermal, and pegmatitic environments scatter widely in Fe/Al.
- Titanite from eclogite tends to have the lowest Fe/Al ratios, typically <1:8.</p>

Conclusions – Charge Balancing

- Charge balance in metamorphic, hydrothermal, and pegmatitic titanite due to Fe⁺³ and Al⁺³ substitution into the Ti⁺⁴ site is largely accomplished by the coupled substitution of F⁻ for O⁻².
- However, in volcanic and plutonic titanite the charge imbalance due to Fe⁺³ and Al⁺³ substitution appears to be mainly coupled with REE⁺³ and Y⁺³ substitution into the Ca⁺² site with a more minor contribution from F⁻ substitution.
- In Si-undersaturated rocks, substitution into the Ti⁺⁴ site by Nb⁺⁵ coupled with Fe⁺³ is a major factor in charge balancing.

Data Base

8,100+ titanite analyses
Most include Fe and Al
A large number also include F

~4,800 analyses are from Brigham Young Univ. and Univ. of Utah microprobe labs

► ~3,300 analyses from literature

Element Substitutions

► Basic Formula = $CaTi(SiO_4)(O,F,OH)$

▶ Ti^{4+} -site elements = AI^{3+} , Fe^{3+} , Nb^{5+} , Ta^{5+} , V^{5+} , Zr^{4+} , etc.

► Ca^{2+} -site elements = REE³⁺, Y³⁺, Mn²⁺, etc.

Volcanic Samples

Plutonic Samples

Plutonic Grains

Volcanic Grains

0.07

Saima alkaline complex, China (Wu et al., 2016), all other data from BYU.

Fe + Al versus F in Titanite

Al versus F in Titanite

Conclusions – Fe/Al ratios

- The atomic ratio of Fe/Al in titanite from both volcanic and plutonic rocks is typically close to 1:1 and almost always >1:2.
- Volcanic titanite compositions typically cluster more tightly in terms Fe, Al, and F than do titanite compositions from any other environment.
- Fe/Al ratios in titanite from silica-undersaturated volcanic and plutonic rocks are typically >1:2.
- Titanite from metamorphic, hydrothermal, and pegmatitic environments scatter widely in Fe/Al.
- Titanite from eclogite tends to have the lowest Fe/Al ratios, typically <1:8.</p>

Conclusions – Charge Balancing

- Charge balance in metamorphic, hydrothermal, and pegmatitic titanite due to Fe⁺³ and Al⁺³ substitution into the Ti⁺⁴ site is largely accomplished by the coupled substitution of F⁻ for O⁻².
- However, in volcanic and plutonic titanite the charge imbalance due to Fe⁺³ and Al⁺³ substitution appears to be mainly coupled with REE⁺³ and Y⁺³ substitution into the Ca⁺² site with a more minor contribution from F⁻ substitution.
- In Si-undersaturated rocks, substitution into the Ti⁺⁴ site by Nb⁺⁵ coupled with Fe⁺³ is a major factor in charge balancing.