Post-Grenvillian tectonomagmatic evolution of the southwestern Laurentian front

Munazzam Ali Mahar, Anthony Alvarez, Jason Ricketts, Philip Goodell

University of Texas at El Paso

Methods

Zircon U-Pb dating of West Texas granites and associated Basalt dikes.

Zircon Hf isotopes composition

Whole-rock geochemistry

Integrating geochronological and geochemical data with spatially and temporally related magmatic rocks.

Orientation of Laurentia with respect to western and southern continents at ~1.1 Ga

Merdit et al., 2017

Mulder et al., 2018

Southwestern and South eastern Laurentia and Grenvillian orogeny (1.3-1.1Ga)

Lithotectonic units and Pre Neoproterozoic Geology of Southwestern Laurentia

1.1 Ga magmatism in southwestern Laurentia and Franklin Mountain

Red Bluff granite and diabase dikes

Geochemistry Red Bluff granite and mafic dikes

Geochemistry of Red Bluff granite and mafic dikes

Zircon U-Pb geochronology of granites and diabase dikes

Oldest individual dates in granites ======= 1176-1138 Ma No inheritance from Paleo-Mesoproterozoic crust.

Zircon U-Pb Geochronology of granites and diabase dikes

Oldest individual dates in diabase dikes ======= 1260-1155 Ma No inheritance from Paleo-Mesoproterozoic crust.

Zircon Hf isotopic evolution of West Texas and other 1.1 magmatic rocks in southwestern Laurentia

Formation of Continent-Arc type Southwestern Laurentia

Mulder et al., 2018

Modified after Li et al., 2008

Collision of Laurentia with a southern continent at ~ 1200-1150 Ma

Tectonomagmatic model for alkaline magmatism, deformation, leucogranites and migmatization in the west Texas and Llano 1.1 Ga

Is Grenvillean orogeny an older analogue to the Himalayan collision zone

Not a new idea though

South Eastern Grenville comparison to India-Asia head to head collision

Collision of Amazonia and Southeast Laurentia

Ca. 1090–980 Grenvillian Orogeny: formation of ABT at ca. 1090 Ma, ABT reworked in extension at ca. 1020 Ma, formation of GF at ca. 1000 Ma

Head to head India-Asia ollision

India-Asia collision at northwestern indenting corner

Post orogenic slab break off and magmatism ~30 Ma following continent-continent collision

Conclusion

- Granites and associated basaltic dikes yielded overlapping ages (~1.1 Ga) and Hf isotopes composition.
- Mafic dikes are possibly related to the basaltic underplate resulted by partial melting of SCLM which remelted by decompressing asthenosphere during a slab breakoff event.
- Absence of zircon inheritance and Hf isotope composition suggest minimal input from older Mesoproterozoic crust, perhaps southern margin of Laurentia is dominantly underlain by juvenile crust.
- For the origin of granites partial melting of basaltic under plate (amphibolites) is suggested.
- Southwestern Laurentia is similar to the southern margin of Asian plate in northwestern Himalaya both have recorded alkaline magmatism, migmatization, deformation and uplifting ~30 Ma following continent-continent collision.