The Geology of Shale Gas and Tight Oil Resources in the United States

Daniel J. Soeder
OVER THE PAST DECADE, unconventional resources have dominated U.S. oil and gas production, making the United States the world’s top producer of both natural gas and oil. Most U.S. production comes from ten plays: 1) The Barnett Shale is a Middle to Late Mississippian siliceous shale and limestone in the Fort Worth Basin that produces dry gas at depth and natural gas liquids (NGL) in shallower regions. 2) The Fayetteville Shale is a Late Mississippian black shale and limestone in the Arkoma Basin of Arkansas that is a dry gas producer. 3) The Late Jurassic Haynesville Shale consists of black shale with interbedded sandstones and red beds in the Texas-Louisiana border region and produces dry gas. 4) The Woodford Shale is a Late Devonian to Early Mississippian shale that occurs in the Anadarko Basin of Oklahoma and produces NGL and dry gas. 5) The Middle Devonian Marcellus Shale extends across the Appalachian Basin from West Virginia to New York, where it primarily produces dry gas and some NGL. 6) The Bakken Formation in the Williston Basin of North Dakota, Montana and Saskatchewan consists of a Late Devonian basal black shale overlain by a limestone member, which is in turn overlain by an Early Mississippian black shale. Oil production is from the middle limestone member and an underlying limestone called the Three Forks. 7) The Late Cretaceous Niobrara Formation is a chalk and shale deposited in the Western Interior Seaway that reaches intermediate depths in the Denver and Powder River basins where it produces NGLs, and dry gas in the deepest part of the Denver Basin at the Wattenberg Field. 8) The Utica Shale is a Middle Ordovician shale above the Trenton Limestone that produces dry gas throughout the Appalachian Basin and abundant NGL in southeastern Ohio. 9) The Late Cretaceous Eagle Ford Shale consists of clay shales interbedded with limestones along the southern Texas Gulf Coast, and produces oil inland, NGL toward the coast, and dry gas at the greatest depths. 10) The Permian Basin of Texas contains six formations that form a large, stacked, unconventional play producing NGL and oil. These are the Early Permian Spraberry, Wolfcamp, Bone Spring, Glorieta, and Yeso formations, and the Middle Permian Delaware Mountain Group. Understanding the geologic factors that affect the behavior of shales can help to improve predictability of resource recovery.
Shale Gas Origins
In the United States

Fall 1973 to Spring 1974: “Energy Crisis”
- October: Yom Kippur war – U.S. supported Israel
- OPEC Arab states embargoed oil exports to U.S.
- Price of gasoline quadrupled ($0.40-$1.60)
- Gasoline was in short supply, nearly rationed

U.S. Department of Energy established in 1977 to fund domestic energy R&D projects.
- Eastern gas shales project (EGSP) 1976-92
- Western tight gas sands
- Coalbed methane
- Geopressed aquifers/ultra-deep gas

EGSP focus: 1) define the resource, 2) develop the engineering, 3) transfer the technology

A second energy crisis in 1979 following the Iranian revolution further heightened the need.

Shale Gas Origins

In the United States

U.S. shale gas has a history of small-scale production going back to the 19th Century.

Engineering/economic challenges of EGSP

- Oversimplified concept of black shales + fractures = gas. Some shales produced gas and others did not.
- EGSP conceptual model was the Big Sandy Field in Kentucky, which is unique.
- Stimulation treatments were hit or miss for unknown reasons.

Mitchell Energy continued experimenting with drilling and completion techniques on the Barnett Shale in Texas post-EGSP, driving shale revolution.

- Southwestern success on Fayetteville in 2004.
- Chesapeake developed the Haynesville in 2005.
- Range Resources success on Marcellus 2007.

Conventional vs. Unconventional

The Geology of Conventional and Unconventional Oil and Gas

- Conventional Non-associated Gas
- Unconventional Oil or Gas Well
- Coalbed Methane
- Conventional Associated Gas
- Oil
- Seal
- Sandstone
- Tight Sand Gas
- Lateral Wellbore with Multi-stage Hydraulic Fractures
- Oil and Gas-rich Shale

Source: EIA
Shale Gas Development
Ten Major Plays

<table>
<thead>
<tr>
<th>Formation</th>
<th>Age</th>
<th>Basins & Location</th>
<th>Primary Developer</th>
<th>Year</th>
<th>Depth</th>
<th>Production</th>
<th>Core Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnett Shale</td>
<td>Mid to Late Miss</td>
<td>Fort Worth, TX</td>
<td>Mitchell Energy</td>
<td>1997</td>
<td>0 - 8k ft</td>
<td>gas, NGL</td>
<td>Newark East Field; NW of Ft. Worth</td>
</tr>
<tr>
<td>Fayetteville Shale</td>
<td>Late Miss</td>
<td>Arkoma, AR</td>
<td>Southwest Energy</td>
<td>2004</td>
<td>0 - 6k ft</td>
<td>dry gas</td>
<td>North-central Arkansas</td>
</tr>
<tr>
<td>Haynesville-Bossier</td>
<td>Late Jurassic</td>
<td>Arkla, TX-LA</td>
<td>Chesapeake Energy</td>
<td>2005</td>
<td>10k - 13k ft</td>
<td>dry gas</td>
<td>Lufkin, TX to Shreveport, LA</td>
</tr>
<tr>
<td>Marcellus Shale</td>
<td>Mid Devonian</td>
<td>Appalachian, WV, PA</td>
<td>Range Resources</td>
<td>2007</td>
<td>0 - 9k ft</td>
<td>gas, NGL</td>
<td>SW PA & NW WV; NE PA</td>
</tr>
<tr>
<td>Bakken Formation</td>
<td>Late Devonian to Early Miss</td>
<td>Williston, ND, MT, SK</td>
<td>EOG Resources</td>
<td>2006 - 2009</td>
<td>4k - 11k ft</td>
<td>oil, gas</td>
<td>NW North Dakota, E. Montana, Canada.</td>
</tr>
<tr>
<td>Woodford Shale</td>
<td>Late Devonian</td>
<td>Anadarko, Ardmore, OK</td>
<td>Newfield Exploration</td>
<td>2005</td>
<td>4k - 25k ft</td>
<td>oil, NGL, dry gas</td>
<td>central & southern Oklahoma</td>
</tr>
<tr>
<td>Niobrara Formation</td>
<td>Late Cretaceous</td>
<td>Denver; Powder River, CO, WY</td>
<td>Whiting Petroleum</td>
<td>2008</td>
<td>0 - 11k ft</td>
<td>NGL, dry gas</td>
<td>E. Colorado, E. Wyoming</td>
</tr>
<tr>
<td>Eagle Ford Shale</td>
<td>Late Cretaceous</td>
<td>TX Gulf Coast</td>
<td>Petrohawk Energy</td>
<td>2008</td>
<td>0 - 20k ft</td>
<td>oil, NGL, gas</td>
<td>southern Texas</td>
</tr>
<tr>
<td>Spraberry, Wolfcamp, Bone Spring, Glorieta, Yeso, and Delaware formations.</td>
<td>Mid to Late Permian</td>
<td>Permian, TX-NM</td>
<td>Multiple</td>
<td>2009</td>
<td>~1k - 25k ft</td>
<td>oil, NGL, gas</td>
<td>West Texas, SE New Mexico</td>
</tr>
<tr>
<td>Utica/Point Pleasant</td>
<td>Mid Ordovician</td>
<td>Appalachian, OH</td>
<td>Multiple</td>
<td>2011</td>
<td>0 - 15k ft</td>
<td>gas, NGL</td>
<td>southeast Ohio</td>
</tr>
</tbody>
</table>
1. Barnett Shale
Fort Worth Basin

- Middle to Late Mississippian siliceous black shale and limestone.
- In 1997 Mitchell Energy successfully applied horizontal drilling (5,000 ft) and staged hydraulic fracturing (10).
- Basin is deeper to the northeast and shallower south on the Llano uplift.
- Shale produces dry gas at depth and NGL in shallower regions.

Photo from Bruner & Smosna, 2011
2. Fayetteville Shale

Arkoma Basin

- Late Mississippian fissile black shale and interbedded dark limestone, similar to Barnett.
- Developed in 2004 by Southwestern Energy using Mitchell’s techniques from the Barnett.
- Main production in north central Arkansas.
- Thermally mature; dry gas producer.

Map and photos from Arkansas Geological Survey

Upper contact with Pitkin LS
Concretion zone near base
3. Haynesville-Bossier Shale

Arkla Basin

- Late Jurassic marine black shale with interbedded sandstones and redbeds.
- Located 3-4 km subsurface (no outcrop) in the Texas-Louisiana border region.
- Thermally mature, produces dry gas; developed by Chesapeake in 2004.
// 4. Marcellus Shale
Appalachian Basin

• Middle Devonian black, siliceous shale, middle carbonate, upper clay shale.
• Depth varies across basin; production primarily dry gas; some NGL near Ohio.
• Range Resources was the primary developer.
• Late Devonian shales were main target of EGSP; only a few cores reached Marcellus.

From Bruner and Smosna, 2011

Photos by Dan Soeder: Oatka Creek (U) Seneca Quarry (L)
5. Bakken Formation
Williston Basin

- Late Devonian to Early Mississippian black shale sandwich on limestone and sandstone.
- Conventional production since 1953.
- Completely subsurface; type section is in the H.O. Bakken No. 1 well, Williams Co., ND.
- Bakken and underlying Three Forks primarily produce light oil and associated gas.
- Developed in 2006 by EOG at Parshall.
6. Woodford Shale

Anadarko Basin

- Late Devonian to Early Mississippian black, bituminous, cherty, fissile shale.
- Depth varies across basin; shale produces NGL shallow/dry gas deep.
- SCOOP/STACK are main plays.
- Newfield was primary developer.
7. Niobrara Formation
Denver-Julesburg Basin

- Late Cretaceous chalk and calcareous shale in the Western Interior Seaway.
- Overlain by the organic-rich Pierre Shale.
- Mostly shallow, but thermally mature in deep structural basins.
- Developed by Whiting in eastern Colo.
- Makes part of stacked play in the PRB.

Map from Sonnenberg, 2011

Photos by Dan Soeder
8. Eagle Ford Shale

Texas Gulf Coast

- Late Cretaceous calcareous shale on Gulf Coast from East Texas into Mexico.
- Located below the Austin Chalk and above the Buda Limestone and Woodbine.
- Varies in depth from outcrops to 14,000 feet toward the Gulf of Mexico.
- Produces oil and NGL shallow/dry gas deep; Petrohawk was primary developer.
9. Stacked Play

Permian Basin

- Permian basin is located in the western part of Texas and southeastern New Mexico.
- Two adjoining basins, the Delaware and the Midland, are separated by a platform.
- Conventional production since 1920.
- In 2010, unconventional formations created a large, stacked play.
 1. Early Permian Wolfcamp Shale
 2. Spraberry Sandstone ("Wolfberry")
 3. Bone Spring Limestone ("Wolfbone")
 4. Glorieta Sandstone
 5. Yeso Formation
 6. Middle Permian Delaware Mountain Group
- Currently running short of pipeline capacity.
10. Utica-Point Pleasant Shale

Appalachian Basin

- Middle Ordovician Utica Shale overlies Trenton-Black River limestones throughout the Appalachian basin.
- Production began in 2011-2012 from dual-completion wells with Marcellus in western PA. Chesapeake is by far the major developer.
- Focus shifted to southeastern Ohio where Utica is rich in NGL.
- Record-setting wells (19,500 ft lateral, 125+ stages, IP=73 MMcf/d)
- Point Pleasant is equivalent formation that outcrops in KY; Ohio GS uses both.
Shale Gas Development
Emerging U.S. Plays

<table>
<thead>
<tr>
<th>Formations</th>
<th>Age</th>
<th>Basins & Location</th>
<th>Rock Type</th>
<th>Production</th>
<th>Potential Resource</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granite Wash</td>
<td>Pennsylvanian</td>
<td>Anadarko, OK</td>
<td>Submarine fans</td>
<td>Oil, NGL, gas</td>
<td>114 billion BOE</td>
<td>Very complex geology</td>
</tr>
<tr>
<td>Austin Chalk</td>
<td>Late Cretaceous</td>
<td>Texas Gulf Coast</td>
<td>Chalk & marl</td>
<td>Oil, NGL, gas</td>
<td>4.1 billion bbl oil 18 TCF natural gas 1 billion bbl NGL</td>
<td>Brittle, hard to drill and frack</td>
</tr>
<tr>
<td>Tuscaloosa Trend</td>
<td>Late Cretaceous</td>
<td>Louisiana-Mississippi border region</td>
<td>Marine shale</td>
<td>Oil, NGL</td>
<td>“comparable to the Eagle Ford”</td>
<td>Too soft to fracture well, crumbles</td>
</tr>
<tr>
<td>Upper Devonian</td>
<td>Late Devonian</td>
<td>Appalachian, WV, PA</td>
<td>Black shale</td>
<td>Dry gas</td>
<td>11 TCF gas</td>
<td>Shallow, less productive</td>
</tr>
<tr>
<td>Rogersville Shale</td>
<td>Middle Cambrian</td>
<td>Rome Trough, Appalachian, KY-WV</td>
<td>Argillaceous shale & limestone</td>
<td>Dry gas</td>
<td>“comparable to the Marcellus”</td>
<td>Very deep and expensive to drill</td>
</tr>
<tr>
<td>Atlantic Rift Basins</td>
<td>Mesozoic</td>
<td>Atlantic Coastal Plain</td>
<td>Rift basin fill</td>
<td>Gas, NGL</td>
<td>3.86 TCF gas; 135 million bbl NGL</td>
<td>Strong local opposition</td>
</tr>
<tr>
<td>Monterey Formation</td>
<td>Middle to Late Miocene</td>
<td>San Joaquin basin, California</td>
<td>Organic-rich, siliceous shale</td>
<td>Oil, NGL, gas</td>
<td>21 million bbl oil 27 BCF gas 1 million bbl NGL</td>
<td>80 dry holes, shale may be spent</td>
</tr>
<tr>
<td>Shublik Formation, Kingak Shale, and Brookian shale</td>
<td>Triassic to Cretaceous</td>
<td>North Slope, Alaska</td>
<td>Limestone, shale, siltstone, and tuff</td>
<td>Oil, NGL, gas</td>
<td>2 billion bbl oil 500 mill bbl NGL 80 TCF gas</td>
<td>Economics of Arctic location</td>
</tr>
</tbody>
</table>
Summary and Conclusions

The single largest gas producing formation in the United States is the **Marcellus Shale**.

The second-largest oil producing state in the U.S. is North Dakota due to the **Bakken Shale**.

The largest oil producing state in the U.S. is Texas due to tight oil from the **Eagle Ford** and **Permian Basin**.

Source: U.S. Energy Information Administration (Popova et al, 2018)