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 It is constituted by three main mineral 
assemblages, all composed of subhedral and euhedral calcite 

with sulfides (sphalerite, galena, chalcopyrite)   

The Guaymas Basin is located northwest of Mexico, in the central part of the Gulf of 
California (Figure 1A). It is a pull-apart basin originated by the opening of the Gulf of 
California in the Miocene ~ 12 million years when the Farallon plate was subduced below the 
North American plate, causing transform boundaries and forming pull-apart basins 
(Lizarralde et al., 2007). This opening trigger a thinning of the oceanic crust, which is mainly 
evidenced by seapage submarine seeping systems, manifested in cold seeps and hot vents 
(De la Lanza-Espino et al., 1999).
In this regard, the Guaymas Basin is a unique geological setting where shallow magmatic 
intrusions drive hydrothermal circulation that produces alteration of a thick cover of organic-
rich sediments. The resulting complex physical, chemical and biological interactions control 
mineralization processes under diverse redox and physical conditions.The nature and 
characteristics of the authigenic-hydrothermal deposits of this basin remain understudied.

In this study, authigenic fragments related to cold seeps and fragments of white smokers 
obtained by an Alvin submarine during the Expedition AT37-06 are investigated in order to 
shed new light about the characteristics and nature of these deposits.

Objetives:
1-To shed light on the redox conditions and processes triggering to the mineralization. 
2-To provide insight concerning the physicochemical characteristics of the fluid mixing that 
drives mineral precipitation.
3-To identify the bacterial processes that influence the authigenic mineralization.
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Authigenic fragments deposits related to cold seeps collected from the 
Ringvent and northern rift consist of fibrous aragonite, barite spheroidal 
aggregates and organic-rich biosiliceous wackstone-packstone.The 
presence of bivalve shells (Archivesica gigas) and abundant diatoms 
suggest oxygen depleted, sulfide-rich reducing, and organic matter-rich 

13environments. The δ C values of these authigenic deposits and bivalve 
shell (from -48.0 to +1.1 ‰) suggest their formation through the anaerobic 
oxidation of methane and indicate that the methane-rich fluids seep out of 
the seafloor. The δ 18O values (from +3.4 to +4.0 ‰) indicate that this 
mineralization precipitated from slightly modified seawater.  

Mixing with seawater

under highly reduced conditions led to precipitation of gold at relatively high temperatures,

Fig. 1. (A) Location of sampling sites in the Guaymas Basin, map produced by 
the Sentry group at WHOI during cruise 37-06. (B) Ringvent cold seep site 
(area outlined with the rectangle in A). (C) Alvin submarine during the 
Expedition AT37-06. (D) Rock sampling with the Alvin's robotic arm. (E) 
Hydrothermal chimney (white smoker) before sampling. (F) Ringvent and 
methane oxidizing tubeworms. (G) Hydrothermal flow and white smokers. (H) 
Sulfidic hydrtothermal mound and Riftia colonies. (I) Authigenic fragment 
related to cold seep (aragonite-dominated) with vugular porosity. (J) White 
smoker with hydrothermal flow channel. D to H (Alvin, WHOI)
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Kim et al. (2007)-Inorganic aragonite  (T = 0 ̶ 40 °C)
  

31000lnα  = (17.88 ± 0.13)* (10  / T) - 31.14 ± 046        aragonite-water

Böhm et al. (2000)-Organic aragonite (T = 3 ̶ 28 °C)
31000lnα    =   (18.45 ± 0.4)* (10  / T) —32.54 ± 1.5aragonite-water

Gaetani y Cohen (2006)O-Inorganic aragonite
Sr/Ca Aragonite water Aragonite waterlnK    =   ln ((X      X ) / (X      X ))D Sr Ca Ca Sr

O’Neil  et al. (1969)-Inorganic calcite (T = 0 ̶ 500 °C)
6 21000lnα    =   2.78* (10  / T ) —3.39calcite-water

Equilibrium water-carbonate fractionation equations

3. RESEARCH METHODS
PETROGRAPHY, GEOCHEMISTRY AND MINERAL CHEMISTRY
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13 18Fig. 2. A to C: stable isotope diagrams. (A) Plot of carbon and oxygen stable isotope composition (δ C and δ O; with respect to the VPDB) 
18 18standard). (B) δ O  composition of the studied carbonates and calculated δ O  for water using different equilibrium water-carbonate SMOW SMOW

34fractionation equations. (C) Histogram showing the distribution of δ S values (with respect to the VCTD standard) of the analyzed sulfides. 
(D) Rock Eval data, Hydrogen index (HI) vs. oxygen index. (E) Calculated molar ratios ranges for waters where the fibrous aragonite crystals 
formed (calculated from microprobe data).
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-Authigenic fragments related to cold seeps at the Ringvent and Northern rift consist of organic-rich biosiliceous wackstone-packstone (diatomaceous sinter) and 
deposits dominated by aragonite (mostly fibrous) and barite (spheroidal aggregates). In the former, the occurrence of abundant diatoms suggest deposition under 
highly productive water columns. Moreover, the occurrence of pyrite framboids (down to 2.1 µm in size), platy barite crystals and Archivesica gigas shells indicates 
oxygen depleted  sulfide-rich reducing environments. Indeed, these conditions could explain the high TOC content (up to 7.19%) found in these deposits. 

The fibrous aragonite cement crystals and bivalve shell from the authigenic fragments related to cold seeps at the Ringvent and Northern rift are highly depleted in 
13 13 13 13

C, yielding δ C values as low as −47.2‰ VPDB (< δ C values of the sedimentary organic matter, but in the range of the δ C values of the methane-pore water, 
both reported in the Guaymas Basin). Hence, those carbonates formed via Anaerobic oxidation of methane, evidencing that methane rich fluids seep out of the 
seafloor. 

18 18They also have δ O values ranging from 3.2 to 4.1‰ VPDB (close to the theoretical δ O values of aragonite precipitated from seawater). Applying fractionation 
18equations, a range of δ O for water from -0.8 to 0.6 SMOW is obtained. These values match with pore-water compositions reported from the northeastern 

transform margin of the Guaymas Basin.  On the other hand, the molar ratios range for water, calculated from microprobe data, suggest that these aragonite 
crystals precipitated from a fluid with a Ba/Ca ratio similar to the reported for normal seawater, although with lower Sr/Ca and Mg/Ca. Along together, these data 
suggest that this carbonates precipitated from slightly modified seawater. 

13- Calcite crystals form the white smoker at the Southern rift have δ C values ranging from -9.2 to -12.9 (in the range of the DIC-pore water reported in Guaymas). 
18 18

These negative values likely reflect a DIC derived from the sulfate reduction of organic matter. They also have unusually O-depleted values (δ O: -23.2 to -
1818.7‰ VPDB). Applying fractionation equations, a range of δ O for water from -0.7 to 4.0‰ SMOW is obtained. Some of these values match normal seawater and 

18
bottom water in Guaymas, however, the highest ones are closed to the δ O values of hydrothermal water. These data likely suggest calcite precipitation from a 

18fluid with some degree of mixing between altered hydrothermally solutions and seawater. Moreover, the highly negative δ O values of the calcite crystal could 
18 34indicated their formation from O-depleted fluids.  On the other hand, the analyzed sulfides (associated to these carbonates), have δ S values ranging from -15.8 

to 4.6‰ VCDT, but most of them have negative values (in general lower than the reported for massive sulfides from modern mid-ocean ridges). It may imply their 
precipitation from a fluid affected by microbial sulfate reduction (MSR). Indeed, a calculated fractionation between seawater sulfate and sulfide gives a value of 
33‰, that match those found by MSR under controlled conditions.


	Página 1

