A statistical framework for determining remotely-sensed geological surface orientations and their error distributions

Daven P. Quinn^{1,2*} and Bethany L. Ehlmann^{2,3}

1 University of Wisconsin—Madison **2** Caltech (* at the time of work) **3** Caltech–Jet Propulsion Lab

Preprint manuscript: https://eartharxiv.org/4enzu

-26800 Northing (m)

Motivation: Mars stratigraphy and structure

HiRISE imagery (0.25 m/pixel) draped on photogrammetric elevation model (1 m per pixel)

Syrtis Major lavas

Motivation: orientations to test depositional mechanisms

Bedding trace (323 m long)

- High correlation coefficient
- Non-unique angular orientation

Motivation: high-quality bedding orientations in general

The same problem operates for remote sensing of stratigraphies on Earth — this is particularly important in light of new tool such as UAVs. Can we create general tools to and visualize the uncertainty of planar measurements?

Orientation error structure

Views of or

Curved exposure Well-resolved orientation

Low-resolution data Larger orientation errors

Planar hillslope Constrained in one direction

13 100 m 0

Poor-quality DEM *Garbage in, garbage out!*

Conceptual framework for orientation errors to a plane **Nominal plane:** rotated from global coordinate basis

- Coordinate basis x: global Cartesian plane
- Coordinate basis $\overline{\mathbf{x}}$: aligned with principal component axes
- Normal vector $\mathbf{n} = \overline{\mathbf{x}}_3$: perpendicular to plane

plane

Conceptual framework for orientation errors to a plane **Error space:** quadric *(generalized conic)* surfaces enclosing nominal plane

- Bundle of all possible planes (hyperboloid)
- Bundle of all possible normal vector endpoints (ellipsoid)

Conceptual framework for orientation errors to a plane **Error space:** projection of Cartesian quadrics to spherical coordinates

• Angular errors can be parameterized as an ellipse or girdle on the unit sphere

Conceptual framework for orientation errors to a plane **Error space:** projection of Cartesian quadrics to spherical coordinates

neasured

bedding

trace

- Angular errors can be parameterized as an ellipse or girdle on the unit sphere
- A planar orientation with error can be fully represented with five angles: strike, dip, rake (distance from Θ_{max} to strike), maximum angular error Θ_{max}, and minimum angular error Θ_{max}

Preprint manuscript: https://eartharxiv.org/4enzu

Orientation error structure: complimentary views of error space

-100

Low-resolution data Larger orientation errors

Preprint manuscript: https://eartharxiv.org/4enzu

stereonet

 $\overline{\mathbf{x}}_1$ - Distance within fitted plane (m)

Orientation error structure: complimentary views of error space Aligned with principal component axes Projected into spherical coordinates **Planar hillslope** Constrained in one direction (shows variance of data) (shows entire error space) Sampling: 0.3° Up Noise: 0.3° 20 · 10 **(**ш ne 0 plai ed -10 fitt **t** -20 13 ona $\overline{\mathbf{x}}_1$ - Distance within fitted plane (m) W 20 -Sampling: 17.0° Noise: 16.5° 10 X 0 -10 -20 -Down -300 -200 -100 100 200 300 $\overline{\mathbf{X}}_2$ - Distance within fitted plane (m) Upper-hemisphere, equal-area rotated **Francq**

Preprint manuscript: https://eartharxiv.org/4enzu

Data variance

stereonet

Orientation error structure: complimentary views of error space

Preprint manuscript: https://eartharxiv.org/4enzu

Orientation error structure: complimentary views of error space

Spherical dip/dipazimuth space

- Shows entire error space
- Easily comparable for low-angle changes

Scale of angular errors

- Varies by orders of magnitude
- Highly nonlinear

Adjustments to standard regression statistics

- 1. Principal component analysis (PCA*) instead of ordinary least squares (OLS)
- In OLS, errors are always vertical (implicit test against horizontality)
- PCA is rotation-invariant (scale of errors does not depend on the orientation of the point cloud)
- Important for comparison between different hillslope orientations and view geometries

Same test point cloud, rotated by 0, 40, and 80°: PCA fit captures rotation while OLS is biased towards shallower orientations; PCA fit also retains the same error structure.

Preprint manuscript: https://eartharxiv.org/4enzu

*PCA as used here is functionally equivalent to total least squares (TLS)

Adjustments to standard regression statistics

2. Parametrization of central limit: variance of data instead of mean

Mean-limited regression

- Errors decrease to zero when oversampled
- Insensitive to scattered data
- Regression line/plane represents the center of a scattered point cloud

Variance-limited regression

- Errors decrease to variance when oversampled
- Much more sensitive to highly scattered planes

_	
)	

Adjustments to standard regression statistics

3. Joint fitting of potentially parallel planes

Preprint manuscript: https://eartharxiv.org/4enzu

Use assumption of parallel bedding to "stack" and jointly fit adjacent beds with different error structures

Applications: the motivating project Northeast Syrtis, Mars — localized structure

Clear change in dip orientation between boxwork fracture zones

Applications: the motivating project Northeast Syrtis, Mars — regional mapping

- Regional summary of bedding orientations
- Comparison across different datasets and outcrop types
- Conclusion: the layered sulfates show features of draping sedimentary deposits

A world-class structural test case

Used readily available data

- Google Maps orthoimages
- State-provided aerial DEM
- No alignment or postprocessing

Results

- Accepted only planes with low errors and residuals
- >60 planes had highquality fits
- Replicated both broad structural pattern and individual measurements

5-m/px aerial photogrammetric DEM

metric DEM Google Maps orthoimagery (~1 m/px)

Used readily available data

- Google Maps orthoimages
- State-provided aerial DEM
- No alignment or postprocessing

Results

- Accepted only planes with low errors and residuals
- >60 planes had highquality fits
- Replicated both broad structural pattern and individual measurements

Remotely-sensed orientations generally correspond within error to nearest literature measurement

Used readily available data

- Google Maps orthoimages
- State-provided aerial DEM
- No alignment or postprocessing

Results

- Accepted only planes with low errors and residuals
- >60 planes had highquality fits
- Replicated both broad structural pattern and individual measurements

Remotely-sensed orientations generally correspond within error to nearest literature measurement

40°

Preprint manuscript: https://eartharxiv.org/4enzu

Could we have found a typo in the geologic map database?

Applications: UAV structure-from-motion models **Onis cliffs, Naukluft Mountains, Namibia Methods**

- DJI Phantom 4: one flight with 500 m standoff
- Low-resolution/quality 3D model in Agisoft Photoscan
- textured mesh and densified using Python script
- structural compass for comparison

Applications: UAV structure-from-motion models Onis cliffs, Naukluft Mountains, Namibia

Results

- Good correspondence between directly-measured and remotely-sensed orientations
- Subtle folding of stratigraphy is confirmed by both UAV and direct measurements
- High-quality measurements without leaving Photoscan (within typical workflow for UAV data)

Supporting software

1. attitude

<u>https://github.com/davenquinn/attitude</u>

https://davenquinn.github.io/attitude (documentation)

- Python module implementing math and helper functions
- Javascript components for displaying data on stereonets
- Compatibility with iPython notebooks
- Core of the method
- Simple to install and use

```
Preprint manuscript: https://eartharxiv.org/4enzu
```

```
heights = N.array([o['center'][2] for o in col
rng = [heights.min(),heights.max()]
```

```
for o in collection:
   ix = N.interp(o['center'][2], rng, [0,6])
   o['color'] = cmap.hex_colors[6-int(ix)]
```

```
init_notebook_mode()
plot_interactive(collection)
```


2. Orienteer

- Data-management application for regional mapping
- Stores orientations in a PostGIS database and supports interactive grouping and data exploration
- Steeper learning curve than attitude

Selection Data Filter Options Tags Hovered item Tag Data type Select		Orientations	
Tags Hovered item	+ 69 2	- due solare the	Selection Data Filter Options
Tag Tag Select	-		Tags Hovered item
<image/>		Carlos Station	Tag
Select		Sand Standers	Data type
$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		+2 + + + + 5 5 5 - 5 - 5 - 5 - 5 - 5 - 5 -	Select 💌
		+3+3 1	
		0 	
		X 00 7 1	
	and the second second	A STATE /	
		All Aller	

Conclusions

- A new statistical framework for error analysis of geologic plane orientations
 - Based on principal component analysis (PCA)
 - Responsive to different sources of error and view geometries
 - Supports joint fitting of parallel sedimentary bedding
- Tested and adaptable to terrestrial and planetary data at a variety of scales
- Particularly well-suited to structure-from-motion photogrammetry
- Software tools for the visualization of orientation errors

Next steps

- Use it!
- Help improve the software, methods, and documentation
- Re-implement the statistical transform in a language of your choice

Preprint manuscript: https://eartharxiv.org/4enzu

<u>https://github.com/davenquinn/attitude</u>

heights = N.array([o['center'][2] for o in col rng = [heights.min(),heights.max()]

for o in collection: ix = N.interp(o['center'][2], rng, [0,6]) o['color'] = cmap.hex_colors[6-int(ix)]

init_notebook_mode() plot_interactive(collection)

