Insights into the magmatic assembly of a voluminous, low δ¹⁸O, and strongly trace element zoned high-silica rhyolite: the Devine Canyon Tuff, Oregon

> Shelby L. Isom*, Erik Shafer, and Martin J. Streck Portland State University - Portland, OR *West Virginia University - Morgantown, WV

The Devine Canyon Tuff (DCT) exhibits:

- progressive increase of trace elements
- no distinct mineral populations
- low δ^{18} O values across all rhyolites & dacite
- late thermal overprint zoned quartz phenocrysts
 Suggesting the DCT assembled and evolved in a single contiguous
 magma reservoir

Geologic Background The High Lava Plains

<u>Legend</u>

- devine Canyon Tuff (DCT) 9.7 Ma
- Prater Creek Tuff (PCT) 8.5 Ma
- Rattlesnake Tuff (RST) 7.1 Ma
- Sampled DCT locations
- Previous DCT extent (Greene, 1971)

Results - Pyroxene Mineral Data

- 2 pyroxene groups
- dacite group overlaps rhyolite groups
- distinct trend of increasing Ca for Group E

Results - Feldspar Mineral Data

- 2 feldspar groups
- dacite group overlaps rhyolite groups
- Group E trends away with increasing Na

Results – Stable Isotopes

- bulk and single quartz and feldspar phenocrysts analyzed from all 5 DCT groups
- maximum range of $\delta^{18}O_{magma}$ values of ~2.0‰
- Groups B and C show the largest range in $\delta^{18}O_{magma}$ values
- 24 Ma dacites have higher $\delta^{18}O_{magma}$

 $\delta^{18}O_{magma}$ Calculations

Quartz:
$$\delta^{18}O_{magma} = \delta^{18}O_{qtz} - 0.45$$

Alkali Feldspar: $\delta^{18}O_{magma =} \delta^{18}O_{feldspar} + 0.29$

(Bindeman, 2008)

Isom, 2017; Standhaft, 2017

Isom. 2017

- 1. banded pumices exhibiting mingling of rhyolites and dacite magmas
- 2. decrease in crystallinity from E to A
- 3. greater than two-fold increase of incompatible trace elements
- 4. highest water concentration in rhyolite group A
- 5. two distinct, but overlapping feldspar and pyroxene groups
- 6. low and variable $\delta^{18}O_{magma}$ values for all groups (A-E)
- 7. increase in temperature, Ti-rich rims on all quartz phenocrysts (A-D)

Simple Mixing Equation and Rayleigh Fractionation used when constructing evolution model for the Devine Canyon Tuff

Increase in crystallinity due to crystal settling or convective removal

Acknowledgements

National Science Foundation National Cooperative Geologic Mapping Program Portland State University Graduate Research Grants Dr. Martin Streck