Integrating high-resolution vegetation data and 14 years of topographic surveys to quantify impacts to sandbar campsites, Grand Canyon National Park

Daniel R. Hadley¹,², Paul E. Grams³, and Matthew A. Kaplinski¹

1. School of Earth Science and Sustainability, Northern Arizona University, Flagstaff, AZ
2. Illinois State Water Survey, University of Illinois, Champaign, IL
3. USGS Southwest Biological Science Center, Grand Canyon Monitoring and Research Center, Flagstaff, AZ

GSA Annual Meeting, 2018
Background

- Glen Canyon Dam constructed in 1963
- Erosion of sandbars due to lack of sediment replenishment
- Vegetation encroachment due to lack of flooding
- Reduction in size and number of sandbar campsites, a vital recreational resource
- Controlled floods primary management strategy to replenish sandbars

Causes of Campsite Loss

- Erosion from daily fluctuations
- Vegetation Encroachment
- Gulllying
The debris-fan eddy complex

- Debris fans form channel constrictions
- Create pools, rapids, and recirculating eddies
- Slower velocities in eddies allow sand deposition
- Separation bars and reattachment bars areas are primary area used as campsites by river runners and hikers
37 Long-Term Monitoring Study Sites

Goals

1. Quantify changes in vegetation at campsites
2. Analyze elevation and slope change due to: controlled floods, daily dam releases, and gullying

- What are the geomorphic and vegetation responses to flow regulation?
- Are controlled floods increasing the size of campsite area long-term?

- Sandbar topography and campsite area measured on a near-annual basis
- 1998-present
- Total-station surveys
- 1-m Digital Elevation Models (DEMs)
- Specific criteria define usable campsite area (smooth sand, < 8 degree slope)
37 Long-Term Monitoring Study Sites

Goals
- What are the geomorphic and vegetation responses to flow regulation?
- Are controlled floods increasing the size of campsite area long-term?

- Sandbar topography and campsite area measured on a near-annual basis
- 1998-present
- Total-station surveys
- 1-m Digital Elevation Models (DEM)
- Specific criteria define usable campsite area (smooth sand, < 8 degree slope)

1. Quantify changes in vegetation at campsites
2. Analyze elevation and slope change due to: controlled floods, daily dam releases, and gullying

Non-Critical Reaches = wide sections of canyon, numerous debris-fans

- What are the geomorphic and vegetation responses to flow regulation?
- Are controlled floods increasing the size of campsite area long-term?
37 Long-Term Monitoring Study Sites

Goals

1. Quantify changes in vegetation at campsites
2. Analyze elevation and slope change due to: controlled floods, daily dam releases, and gullying

- What are the geomorphic and vegetation responses to flow regulation?
- Are controlled floods increasing the size of campsite area long-term?

Critical Reaches = narrow sections of canyon, limited number of campsites

- Sandbar topography and campsite area measured on a near-annual basis
- 1998-present
- Total-station surveys
- 1-m Digital Elevation Models (DEMs)
- Specific criteria define usable campsite area (smooth sand, < 8 degree slope)
Methods

A. Campsite surveys (2002-2016)
B. Elevation change calculated from DEMs of difference
C. Slope change based on 8° threshold
D. Vegetation change using canyon-wide maps of vegetation (May 2002 and 2009)
 - 4-Band orthoimagery (RGB + NIR)
 - 0.20 m resolution
 - Normalized Difference Vegetation Index
 \[
 \text{NDVI} = \frac{(\text{NIR} - \text{VIS})}{(\text{NIR} + \text{VIS})}
 \]
E. Gullies detected from flow direction and flow accumulation tools (ArcGIS) using slope rasters

Two Components

1. Determined cause of campsite area changes from 2002-2009 (includes 2004 and 2008 controlled flood)
Results (2002-2009)

- Net decline of campsite area of 2,547m2 (12%), despite two controlled floods
- Erosion and slope change more prevalent in critical reaches (both gains and losses)
- Vegetation expansion more prevalent in non-critical reaches
- Gully ing occurred at 5 sites, accounted for < 1% of overall loss (important locally, but not overall)

Two drivers of campsite change
- Short-term gains and losses associated with controlled floods and flood deposit erosion
- Long-term one directional loss of due to vegetation encroachment
Specific Mechanisms of Topographic Change (2002-2009)

Elevation Change with no slope change

A. Deposition → burial of vegetation/boulders → campsite gain
B. Erosion → exposure of vegetation/boulders → campsite loss
C. Deposition → presence of driftwood/debris → campsite loss
D. Erosion → sandbar smoothing → campsite gain

Elevation Change and slope change

1. Deposition → creates flat area → campsite gain
2. Deposition → creates steep area → campsite loss
3. Erosion → removes flat area → campsite loss
4. Erosion → removes steep area → campsite gain

Lateral Cutbank Retreat

Site 22.1R
Specific Mechanisms of Topographic Change (2002-2009)

1. Deposition → creates flat area → campsite gain
2. Deposition → creates steep area → campsite loss
3. Erosion → removes flat area → campsite loss
4. Erosion → removes steep area → campsite gain

Elevation Change and slope change

1. Deposition → creates flat area → campsite gain
2. Deposition → creates steep area → campsite loss
3. Erosion → removes flat area → campsite loss
4. Erosion → removes steep area → campsite gain

- Controlled floods both create and destroy campsite area
- Not a direct correlation between increases in sandbar size and campsite size
Estimating Cause of Campsite Change (2002-2016)

- Campsite area declined by 37%
- 6 Controlled Floods
- Avg. vegetation expansion rate of 413 m^2/year
- Gains in campsite area from topographic change essentially negligible
- Vegetation expansion basically outpacing the short term gains associated with controlled floods
Conclusions

What are the geomorphic and vegetation responses to flow regulation?
• Native and non-native vegetation continues to expand
• Gains from controlled floods often short-lived due to fluvial mainstem erosion (daily fluctuating dam releases)

Are controlled floods increasing the size of campsite area long-term?
• Despite the use of more frequent floods......not exactly
• Sandbars maintaining or increasing in volume (Grams et al., 2015;2018) , but not direct relationship (Hazel et al., 2008)

Recommendations
• Manual vegetation removal (particularly sites in critical reaches)
• Update vegetation expansion rates with 2013 imagery

South Canyon RM 32.2, looking downstream

USGS Desert Laboratory Repeat Photography Collection
Publications and Contact

 https://doi.org/10.3133/sir20175096

- USGS Data Release (2018)
 https://www.sciencebase.gov/catalog/item/59a5d3dae4b024f204d408b5

- River Research and Applications article (September 2018)
 Quantifying geomorphic and vegetation change at sandbar campsites in response to flow regulation and controlled floods, Grand Canyon National Park, Arizona
 https://doi.org/10.1002/rra.3349

Acknowledgements

Funded by Glen Canyon Dam Adaptive Management Program through a cooperative agreement between the USGS Grand Canyon Monitoring and Research Center and NAU. Thanks to Rod Parnell, Joe Hazel, Tom Gushue, Rob Ross, Tim Andrews, and all the NAMS!