Radiocarbon Analysis of Microbial RNA to Determine Carbon Sources in Arsenic Contaminated Pleistocene Aquifers in Bangladesh

	Madeleine Killough, Katharine Scanlan, Brian Mailloux, Alexander van Geen	Environmental Sciences, Barnard College, New York, NY
	Tasbiha Chowdhury	Department of Engineering, Smith College, Northampton, MA
ALC: UNIVERSE	Benjamin C. Bostick, M. Rajib Hassan Mozumder, Tyler Ellis	Lamont-Doherty Earth Observatory, Columbia University, New York, NY
	Imtiaz Choudhury, Kazi Matin Ahmed	Department of Geology, University of Dhaka, Dhaka, 1000, Bangladesh
との	Bruce Buccholz	Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA

Geogenic As and Iron Reduction

- Geogenic As
 - Naturally occurring
 - Prevalent in Southeast Asia
- Health effects:
 - Cardiovascular disease
 - Skin lesions
 - Cancers (skin, lungs, liver)
- As release through iron reduction
 - Fe III \rightarrow Fe II
 - Where is the organic carbon coming from?

As Contamination of Shallow, Pleistocene Aquifer

• Shallow wells:

- <40 m
- Draws from Holocene aquifer
- Cheap and easy to drill
- As levels >10 μg/L

Intermediate wells:

- ~40 150m
- Draws from Pleistocene aquifers
- Cheap and easy to drill
- Generally lower As (<10 µg/L)
- Some As contamination (>10 μg/L)

Deep wells:

- >120m
- Expensive to drill
- Low As (<10 μg/L)

Potential Carbon Sources

Bacterial Reduction of Sedimentary As

Extraction and Radiocarbon Dating

Young surface OC

or ages similar to the Holocene aquifer (0-1,000 years old) (Mailloux et. al)

Old OC buried with the sediment

(>10,000 years old) (McArthur et. al)

OC and organics diffusing out of clays

(>10,000 years old) (Erban et. al)

Pleistocene wells >30 meters

Possibilities for Carbon Movement at Site M:

Arsenic Measurements at Site M:

Extraction Methodology

- 33,860 liters pumped at Site M1.4A
- Filter cut in half to create duplicates
- Cell lysis, Tris-saturated Phenol
 Chloroform (1:1), LiCl precipitation
- Radiocarbon dated at LLNL
- Extensive E. Coli testing reproduced end member modern dates

RNA Radiocarbon Dates from Pleistocene Aquifer <1,000 years old

Sample Name	Δ ¹⁴ C	¹⁴ C Age
RNA (1)	-111.4 ± 20.1	880 ± 190
RNA (2)	-121.8 ± 6.2	980 ± 60

Comparison of RNA, DOC, CH₄ Radiocarbon Ages

- Site M sediment
 (50.6 m) = >10,000
 years old
- Site M DIC (54.5 m)= 1,050 years old

Young Dates Support Advection of Surface OC Around Clay to the Pleistocene Aquifer

Young Dates Support Advection of Surface OC Around Clay to the Pleistocene Aquifer

Conclusions:

Duplicates worked

- RNA dates <1000 years
 - Younger than sediment and in situ carbon sources
 - Young OC transported around the clay

 Long term stability of Pleistocene aquifers may be compromised by the transport of young OC down to Pleistocene depths, possibly due to groundwater pumping

Acknowledgements

- Brian Mailloux
- Katharine Scanlan
- Tasbiha Chowdhury
- Alexander van Green
- Benjamin Bostick
- Rajib Mozumder
- Tyler Ellis
- Imtiaz Choudhury
- Kazi Ahmed
- Bruce Buccholz

- Columbia University
- Barnard's Summer Research Institute
- Earth Intern Program
- Columbia University Earth Institute
- Mailloux Lab
- Van Geen Lab
- Bostick Lab
- Dhaka University and Students
- NIEHS

Young Dates Support Advection of Surface OC Around Clay to the Pleistocene Aquifer

