Radiocarbon Analysis of Microbial RNA to Determine Carbon Sources in Arsenic Contaminated Pleistocene Aquifers in Bangladesh

<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madeleine Killough, Katharine Scanlan, Brian Mailloux, Alexander van Geen</td>
<td>Environmental Sciences, Barnard College, New York, NY</td>
</tr>
<tr>
<td>Tasbiha Chowdhury</td>
<td>Department of Engineering, Smith College, Northampton, MA</td>
</tr>
<tr>
<td>Benjamin C. Bostick, M. Rajib Hassan Mozumder, Tyler Ellis</td>
<td>Lamont-Doherty Earth Observatory, Columbia University, New York, NY</td>
</tr>
<tr>
<td>Imtiaz Choudhury, Kazi Matin Ahmed</td>
<td>Department of Geology, University of Dhaka, Dhaka, 1000, Bangladesh</td>
</tr>
<tr>
<td>Bruce Buccholz</td>
<td>Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA</td>
</tr>
</tbody>
</table>
Geogenic As and Iron Reduction

- Geogenic As
 - Naturally occurring
 - Prevalent in Southeast Asia

- Health effects:
 - Cardiovascular disease
 - Skin lesions
 - Cancers (skin, lungs, liver)

- As release through iron reduction
 - Fe $\text{III} \rightarrow$ Fe II
 - Where is the organic carbon coming from?

Oremland & Stolz, 2005; Ravenscroft et al., 2001
As Contamination of Shallow, Pleistocene Aquifer

- **Shallow wells:**
 - <40 m
 - Draws from Holocene aquifer
 - Cheap and easy to drill
 - As levels >10 µg/L

- **Intermediate wells:**
 - ~40 - 150m
 - Draws from Pleistocene aquifers
 - Cheap and easy to drill
 - Generally lower As (<10 µg/L)
 - *Some As contamination (>10 µg/L)*

- **Deep wells:**
 - >120m
 - Expensive to drill
 - Low As (<10 µg/L)
Young surface OC or ages similar to the Holocene aquifer (0-1,000 years old) (Mailloux et. al)

Old OC buried with the sediment (>10,000 years old) (McArthur et. al)

OC and organics diffusing out of clays (>10,000 years old) (Erban et. al)

Potential Carbon Sources

Bacterial Reduction of Sedimentary As

Extraction and Radiocarbon Dating

- RNA
- DNA
- PLFA
Pleistocene wells >30 meters
Possibilities for Carbon Movement at Site M:

Clay Sand Oxidized, low As sediment OC travel pathways
Arsenic Measurements at Site M:

- High As Holocene
- Generally Low As Pleistocene

Diagram showing depth and arsenic measurements at Site M, with pumping site indicated.
Extraction Methodology

• 33,860 liters pumped at Site M1.4A

• Filter cut in half to create duplicates

• Cell lysis, Tris-saturated Phenol
 Chloroform (1:1), LiCl precipitation

• Radiocarbon dated at LLNL

• Extensive E. Coli testing reproduced end member modern dates
RNA Radiocarbon Dates from Pleistocene Aquifer <1,000 years old

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Δ^{14}C</th>
<th>14C Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA (1)</td>
<td>-111.4 ± 20.1</td>
<td>880 ± 190</td>
</tr>
<tr>
<td>RNA (2)</td>
<td>-121.8 ± 6.2</td>
<td>980 ± 60</td>
</tr>
</tbody>
</table>
Comparison of RNA, DOC, CH$_4$ Radiocarbon Ages

- Site M sediment (50.6 m) = >10,000 years old
- Site M DIC (54.5 m) = 1,050 years old
Young Dates Support Advection of Surface OC Around Clay to the Pleistocene Aquifer
Young Dates Support Advection of Surface OC Around Clay to the Pleistocene Aquifer
Conclusions:

• Duplicates worked

• RNA dates <1000 years
 • Younger than sediment and in situ carbon sources
 • Young OC transported around the clay

• Long term stability of Pleistocene aquifers may be compromised by the transport of young OC down to Pleistocene depths, possibly due to groundwater pumping
Acknowledgements

- Brian Mailloux
- Katharine Scanlan
- Tasbiha Chowdhury
- Alexander van Green
- Benjamin Bostick
- Rajib Mozumder
- Tyler Ellis
- Imtiaz Choudhury
- Kazi Ahmed
- Bruce Bucchoz

- Columbia University
- Barnard’s Summer Research Institute
- Earth Intern Program
- Columbia University Earth Institute
- Mailloux Lab
- Van Geen Lab
- Bostick Lab
- Dhaka University and Students
- NIEHS
Young Dates Support Advection of Surface OC Around Clay to the Pleistocene Aquifer