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Impact glass spherule in lunar soil samples 
are physical evidence of impact-driven 
material transport and not uncommon in 

other planetary bodies of the Solar System. 
Glass and Simonson 2013

Wittmann et al. 2015

Barrat et al. 2009
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The fact of submillimeter in sizes of impact glass spherules indicates a 
similar physics process across different planetary bodies that form them.



The 40Ar-39Ar age distributions of lunar glass spherules 
in many soil samples show an excess at <500 Ma.

Apollo 12 12023
68 spherules

Apollo 14 14259
19 spherules

Apollo 16 
66041&64501 
48 spherules

Apollo 17 71501 
12 spherules
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Cratered Terrain Evolution Model (CTEM) is a Monte Carlo code for 
simulating the heavily-cratered surface and suitable for studying 

layering dominated environments . 

Richardson (2009), Minton et al. (2015), Huang et al. (2017)

CTEM bombardment simulation CTEM bombardment simulation with a 
streamline based material tracking system

Digital elevation model Ejecta layering model

250 m
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Our model can explain the excess of young spherules 
in <500 Ma without changing the impact flux.
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Observation of five 
Apollo soil samples

Model result of 
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from 10 cm depths

Model result of 
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This result does not rule out a changing lunar impact, but suggests that this 
data set is too biased to draw any strong conclusions



A relation between residence times and resident 
depths of glass spherules suggests a half life. 

Spherule populations 
within a depth of 6 m 

Half life of spherule populations 
versus depths

Huang et al. (2018) GRL
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Different spherule populations reveal different age 
behavior, so we now focus on the “exotic” spherules”.

(3) Geochemically-
distinct (“exotic”) glass 

spherule age distributions

Huang et al. (2018) Bombardment workshop

(2) Spherule age 
distributions collected 
from deeper depths
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Matching spherules’ composition with Lunar Prospector Gamma-Ray 
Spectrometer abundance map, we identified 14 exotic spherules that are 

far away from collection sites.
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14 exotic spherules from Apollo 14, 16, and 17 sites are 
selected from Zellner and Delano (2015) and Zellner et 

al. (2009) and three new spherules in this study. 
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Exotic impact glass spherules told a different story of lunar 
impact flux, yet it is not explained by a constant impact rate.
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Observation 1:  No tight clustering in the age 
distribution of simulated impacts in CTEM.
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al. (2009) and three new spherules in this study. 

1

2

3

4

5

Nu
mb

er

0 200 400 600 800 1000

Re
la

tiv
e 

pr
ob

ab
ilit

y

Age (Ma)

Exotic glass spherules ONLY

Possible Copernicus 
Crater forming age

Exotic impact glass spherules told a different story of lunar 
impact flux, yet it is not explained by a constant impact rate.

0.9  0.8  0.7  0.6  0.5  0.4  0.3  0.2  0.1  0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

 0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

 0

983

783

825
774

948

988

820

1000

800

Observation 2: 800 Ma-old Exotic spherules 
are away from collections and in multiple 

landing sites.
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Observation 3: We found only one 800 Ma-
old, exotic spherule geochemically similar to 

Apollo 12 ropy glasses.



To explain the excess of ~800 Ma-old exotic glasses, 
we considered two possibilities. 

Hypothesis 1: There was an increase in the lunar impact flux 800 Ma 
ago, and Copernicus Crater formed in this period. 

Hypothesis 2: Exotic glasses were produced from re-impacting 
ejecta from Copernicus Crater.
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To explain the excess of ~800 Ma-old exotic glasses, 
we considered two possibilities. 

Hypothesis 1: There was an increase in the lunar impact flux 800 Ma 
ago, and Copernicus Crater formed in this period. 

Hypothesis 2: Exotic glasses were produced from re-impacting 
ejecta from Copernicus Crater.

Most importantly, the melt production is dependent on impact velocity. 

We hoped to clarify the coincidental relationship between the formation of 
Copernicus Crater and the excess of exotic spherules.   



Impact velocity 
(km/s)

Peak pressure
(vertical impact, GPa) 

!"# ≈ 17.5	*!+
(~20% porosity*)

!"# > 30	*!+
(0% porosity)

2.4 11.8 N N
2.5 12.8 N N
2.6 15.8 N N
2.8 16.9 N N
3.0 18.1 Y N
3.2 20.4 Y N

Fragments ejected at >3 km/s are suggested to be 
able to produce glass. 

Assumed linear shock velocity:
!"# = % + '!(	(% = 500	-/', ' = 3.17,	Güldemeister et al. 2013)
Peak pressure by Planar Impact Approximation (Melosh, 1989): 
4567 = 8!"#!(	 8 = 2297	;<-=>, !( = 0.5?@5(
45@ : Incipient peak pressure for melting (Kowitz et al. 2013; Stöffler and Langenhorst, 1994)
*: Up to 80% melt and glass observed.
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Copernicus 
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craters cannot 
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We combined fragmentation and N-body orbit dynamics codes, 
and generated a SFD of Copernicus Crater’s ejecta fragments.
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Considering that the lower velocity makes glass formation more 
difficult, sesquinary-forming spherules appears negligible. 

All Copernicus Crater-forming craters SFD 
(> lunar escape velocity)

For only ~3 km/s
Glass-forming SFD 
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the largest crater produced in a  

short-lived impact spike at ~800 Ma 
as proposed by Zellner et al. (2009).



Considering that the lower velocity makes glass formation more 
difficult, sesquinary-forming spherules appears negligible. 

All Copernicus Crater-forming craters SFD 
(> lunar escape velocity)

For only ~3 km/s
Glass-forming SFD 

Copernicus Crater may have been 
the largest crater produced in a  

short-lived impact spike at ~800 Ma 
as proposed by Zellner et al. (2009).

Or a link between geochemical 
composition of exotic glass 

spherules and Copernicus Crater 
needs to be further assessed. 



Implications
• The excess of lunar impact glass spherules in the last 500 Ma can be explained 

by our depth-dependent sampling bias model without changing the impact flux, 
but this does not rule out a possibility of a change in the lunar impact flux. 

• Our identified fourteen exotic glass spherules show an excess of 800 Ma ages, 
which is consistent with an initial finding of Zellner et al. (2009). 

• Due to a negligible amount of Copernicus Crater-forming spherules, Copernicus 
Crater alone cannot explain the excess of 800 Ma-old, exotic spherules, 
suggesting a possibility of a short-lived spike ~800 Ma ago on the Moon. 

• Considering a target heterogeneity of Copernicus Crater regime, a further 
geochemical analysis for our identified “exotic” spherules and the subsurface of 
Copernicus Crater is needed.
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