Microfacies and Depositional Environments of the Bathonian-Bajocian Middle Dhruma Carbonates, Central Saudi Arabia

Babalola, Lamidi O.2, Ismanto, Aviandy W.1, Chan, Septriandi A.1, Abdullatif, Osman M.1, Kaminski, Michael A.1

Geosciences Department, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.

Introduction

The Jurassic ancient carbonate succession of Saudi Arabia, named the Shaqra Group, provides an excellent carbonate ramp model along the western margin of Neo-Tethys Ocean. The group which hosts eight reservoirs is economically important containing large volumes of hydrocarbon (Cantrill et al., 2013). The D2-D4 are equivalents to Faridah reservoirs (Hughes 2004; 2009a). The formation was deposited in a semi-isolated basin that contained many endemic species of ammonites, brachiopods, echinoderms and bryozoans.

Objectives

Sedimentological, stratigraphical, petrographical and biofacies analyses of the outcropping D2, D3, and D4 Units of the Dhruma were used to identify and characterize their microfacies, develop and interpret the depositional model of the identified facies.

Methodology

A total of 107 samples were collected from three outcrop sections of the Dhruma Formation (D2, D3 and D4 Units) exposed in the Hafit Nishah district of the Riyadh region, Saudi Arabia (Figs. 1 & 2). Thin section petrography, scanning electron microscope (SEM) imaging and X-ray diffraction (XRD) analyses were conducted on the samples. Thin sections were used for the microfacies and biofacies identification (Figs. 3 & 4) using an Olympus petrographic microscope with camera attached. Bulk mineralogy of the samples were determined with XRD analysis. The outcome of the laboratory analyses were integrated with the field sedimentological description to infer the depositional setting of the identified microfacies.

Results

Integration of the petrographic and foraminiferal data facilitated the interpretation of the depositional environments of the facies identified. All the microfacies were deposited in a shallow marine environment, mostly inner ramp setting. The D2-lower D4 outcrop sections are characterized by a coarsening upward sequence that commences with the deposition of MF3 and MF2 at the base and capped by MF4 or MF5 at the top. The upper D4 section which is characterized by either the MF8 or MF7 facies at the base, and capped by MF4 or MF5 facies at the top, mostly represents open marine to shaly complex environments. Conceptual 2D and 3D models of the interpreted depositional environment show the distribution of these facies (Fig. 5). The depositional setting inferred is consistent with the earlier studies which documented that the Middle Dhruma Formation in the study area was deposited in a shallow marine environment. (e.g., Powers et al., 1966; Mwaisiti et al., 1985).

Conclusion

1. Eight microfacies including the skeletal peloidal packstone, peloidal skeletal wackestone, skeletal oolitic packstone, peloidal grainstone, oolitic mudstone, skeletal floatstone, and burrowed wackestone were identified.
2. Grouped into three Facies Associations: lagoonal (i.e., skeletal peloidal packstone, peloidal skeletal wackestone), shallow complex (i.e., skeletal oolitic packstone, peloidal grainstone, oolitic grainstone), and open marine (i.e., mudstone, skeletal floatstone, burrowed wackestone).
3. These facies were deposited in an inner ramp carbonate platform shallow marine (peritidal to open marine) without pronounced abrupt clastic influx.

References


Acknowledgement

This work was funded by King Abdullah City for Science and Technology (KACST) through project No NSTIP-15-OIL1694-04 as part of the National Science, Technology and Innovation Plan. We are grateful for the support provided by the Geosciences Department and the Research Institute at KFUPM.