What soil properties regulate respiration rate as an indicator of soil health?

Mostafa Ibrahim¹, Michael Thompson¹, Matt Liebman¹, and Matt Helmers² ¹Agronomy Department, Iowa State University

²Agricultural and Biosystems Engineering Department, Iowa State University

- The term **soil health** refers to a holistic perspective on how a soil functions in the agricultural ecosystem, with particular emphasis on biological processes.
- Healthy soils are *resilient* to external impacts that might negatively affect the productivity and stability of the soil ecosystem.

Objective

To assess the relationship between short-term CO₂ evolution (soil respiration) (an indicator of soil health) and other soil properties (e.g., organic carbon (OC), total nitrogen (TN), particulate organic matter (POM), and water-extractable organic carbon and nitrogen (WEOC and WEON) under perennial and annual cropping systems.

Results

- **Particulate organic matter (POM)** in perennial cropping systems (P and PF) was significantly greater than that in annual cropping systems (CC and CCW) (Fig. 2) (Both years and seasons were pooled).
- Soil CO₂ respiration in perennial crops (P and PF) was significantly greater than that in annual crops (CC and CCW) (Fig. 3). (Both years and seasons were pooled)

Materials & Methods

- The experiment was established in 2008 near ISU. All plots are tile drained and receive no tillage.
- The experimental treatments: continuous corn (CC), continuous corn with a rye cover crop (CCW), unfertilized reconstructed multispecies prairie (P), and fertilized reconstructed multispecies prairie (PF).
- **Soil sampling:** Two composite samples from each plot were collected from the 0-15 cm depth at four times, i.e., in April and November in both 2016 and 2017.

Fig. 2. Particulate organic matter (POM) concentration in perennial and annual crops **Fig. 3.** Soil CO₂ respiration in perennial and annual crops.

> Regulators of respiration. We explored the possibilities that the 24-h respiration rate might be regulated by POM-C, water-extractable C, soil organic C, total soil N, soil clay, and water-extractable organic N. Only POM-C and water-extractable C were found to be significantly related to CO_2 -C respired.

 CO_2 -C (mg kg⁻¹) = POM-C (g C kg⁻¹) + WEOC (mg kg⁻¹)

Spring 2016

> Over all treatments, years, and seasons:

Table 1. Parameter estimates and effect tests (2-way ANOVA) (64 observations – pooling treatments, years, and seasons)

Param. Est. F Ratio Prob > F

24-h CO₂ respiration was significantly related to both POM-C and WEOC (Table 1).

Model: CO2-C (mg kg⁻¹) = POM-C (g C kg⁻¹) + WEOC (mg kg⁻¹), R² = 0.45

Term	Parameter Estimate	Std Error	F Ratio	Prob > F
Intercept	6.6	16.4		
POM-C (g C kg ⁻¹)	25.4	5.8	18.83	< 0.0001
WEOC (mg kg ⁻¹)	0.24	0.06	18.49	< 0.0001

Table 2. Two-way ANOVA model for each year and season (n=16 for each)

 $R^2 = 0.47, P = 0.0152$

 \succ When the years and

Soil analyses: Soil properties were determined, e.g., soil CO_2 respiration using the Solvita technique (*Fig. 1*), OC, TN, POM, WEOC, and WEON.

> Field plot layout

Fig. 1. Measuring soil CO₂ respiration using Solvita **technique** (CO₂ evolved during 24-h incubation at uniform water content)

seasons were considered separately, however, CO₂ respiration was significantly related only to POM-C and in three of the four sampling times (Table 2).

		,			
	POM- C (g kg ⁻¹)		33.25	5.88	0.031*
	WEOC (mg kg ⁻¹)		0.26	2.44	0.142
)	Fall 2016	R ² = 0.30, P = 0.0948			
	POM-C (g kg ⁻¹)		23.01	2.17	0.165
	WEOC (mg kg ⁻¹)		0.11	0.15	0.709
	Spring 2017	$R^2 = 0.67, P = 0.0007$			
	POM-C (g kg ⁻¹)		28.97	24.55	0.0003*
•	WEOC (mg kg ⁻¹)		0.05	0.21	0.6530
	Fall 2017	R ² = 0.74, P = 0.0002			
	POM-C (g kg ⁻¹)		41.72	24.82	0.0003*
	WEOC (mg kg ⁻¹)		-0.02	0.02	0.8981

Haney Soil Health Index (SHI):

The soil health index for the perennial treatments (P and PF) was significantly higher than that of the annual treatments (CC and CCW) (Fig. 4). This result corresponds with the strong weighting of 24-h respired CO₂ in the Soil Health Index.

> Soil health Index: We used the Haney soil health $= (CO_2/10 + WEOC/100 + WEON/10)$

CCW PF CC D

Cropping systems

Fig. 4. Haney Soil Health Index (SHI) under four biofuel cropping systems

Conclusions

Compared to annual bioenergy crops (CC and CCW treatments), soil under the perennial bioenergy crops (P and PF treatments) had significantly greater concentrations of POM, greater CO₂ respiration rates, and higher soil health indices. POM carbon and water-extractable carbon had statistically significant impacts on CO₂ respiration, but other parameters tested (non-POM organic C, total N, water-extractable N, and clay) did not.

Acknowledgments

We thank the Leopold Center for Sustainable Agriculture and the Iowa Nutrient Research Center for supporting this work.