

THERMAL ENERGY EXTRACTION FROM A GEOTHERMAL RESERVOIR: NUMERICAL AND ANALYTICAL MODELING ANALYSIS

> Jeremy Patterson, Michael Cardiff, Herb Wang, Kurt Feigl, and PoroTomo Team

ACKNOWLEDGEMENTS

Collaborators (PoroTomo Team):

Support:

The work presented herein was funded in part by the <u>Office of Energy Efficiency and Renewable Energy (EERE), U.S.</u> <u>Department of Energy</u>, under Award Numbers DE-EE0006760 and DE-EE0005510. <u>ORMAT Technologies, Inc.</u> generously provided field site access, safety training, and data sharing to support this work.

Additional Support:

Cardiff: EAR-1654649 "CAREER: Understanding transport processes in fractured sedimentary rock through multi-frequency and multi-method investigations"

OUTLINE

- PoroTomo Overview
- Study Area
- Thermal Characterization
- Hydraulic Characterization
- Conclusions
- Future Work

POROTOMO OVERVIEW

Big Picture Question:

 Can we constrain the thermal sustainability of a geothermal reservoir?

First Order Questions:

- Can we estimate the relevant thermal and hydraulic reservoir properties?
- How does fluid move through the reservoir?

Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology

- Project Objective
 - "...assess an integrated technology for characterizing and monitoring changes in the rock mechanical properties of an EGS reservoir in three dimensions with a spatial resolution better than 50 meters." (http://geoscience.wisc.edu/feigl/porotomo/)

Brady Geothermal Field

- 75 km NE of Reno
- NE-SW trending high angle normal faults
- Shallow sedimentary units
- Deeper volcanic units

2018 GRADUATE RESEARCH SYMPOSIUM

Borehole DTS

- Sampling interval
 - Spatial 0.12 [m]
 - Temporal 60 [s]
- Borehole temperature recovery
- Inverted geotherm below 260 m

Adapted from *Patterson et al.,* [2017]

THERMAL CHARACTERIZATION

Borehole schematic

- Vertical temperature profile along borehole
- Radial heat diffusion into borehole
- Fluid filled and cased portion of borehole (~125 300 m depth)
- Conceptual model for numerical heat transfer model

THERMAL CHARACTERIZATION

Parameter estimation results:

- Thermal diffusivity depth profile
- Major changes correlated with lithologic changes
- Estimated diffusivity lower than lab reported values

Patterson et al., [2017]

SUBSURFACE FLUID FLOW

Adapted from Feigl and Team, [2018]

2018 GSA - NORTH CENTRAL SECTION

SUBSURFACE FLUID FLOW

Evidence for fault-driven groundwater flow:

Borehole advection

SUBSURFACE FLUID FLOW

Evidence for fault-driven groundwater flow:

- Borehole advection
- Ground subsidence

Adapted from Reinisch et al., [In Review]

Evidence for fault-driven groundwater flow:

- Borehole advection
- Ground subsidence
- Hydrothermal Deposits

Adapted from *Miller et al.,* [2018]

2018 GSA - NORTH CENTRAL SECTION

HYDRAULIC CHARACTERIZATION

Groundwater Flow Model

- 7 km x 13 km x 6 km
- Discretization
- 3 Hydraulic Property Zones
- Zoned Parameter Estimation

HYDRAULIC CHARACTERIZATION

HYDRAULIC CHARACTERIZATION

Lithology	K [m/s]	S _s [m⁻¹]
Sedimentary	4.1 x 10 ⁻²	7.0 x 10 ⁻⁸
Volcanic	2.7 x 10 ⁻⁴	3.5 x 10 ⁻⁸
Fault	1.7 x 10 ⁻⁸	1.8 x 10 -6

Parameter estimates indicate:

- Specific storage estimates indicate confined behavior
- Faults may act as barrier to flow

Lithology	K [m/s]	S _s [m⁻¹]
Sedimentary	4.1 x 10 ⁻²	7.0 x 10 ⁻⁸
Volcanic	2.7 x 10 ⁻⁴	3.5 x 10 ⁻⁸
Fault	1.7 x 10⁻ ⁸	1.8 x 10 -6

Two component fault zone

- Low permeability fault core
- Higher permeability damage zone

Adapted from Bense et al., [2013]

Plan View (100 m depth)

- Advective transport from injection well
- Flow paths show planar flow following fault traces

FLOW CHARACTERIZATION

- Thermal characterization determines thermal diffusivity estimates which are consistent with expected values based on rock types.
- Hydraulic characterization implies individual faults act as barriers to groundwater flow
- Geophysical, visual observations, and advective transport simulations indicate fault-driven groundwater flow system.

FUTURE WORK

Analytical Modeling

- Energy consumed vs energy produced?
- Hydraulically active faults?
- Parameter sensitivity?

Questions?