Aggregates for Concrete

Dr Peter Taylor, PE

National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY Institute for Transportation

Concrete

- Civilization would be stunted without it.
- Can be formed to any shape.
- It is fabricated on site.
- Using empirical QC tools.
- There is a lot of it
- Its more complicated than you think

What is Concrete?

The Perfect Material for Pavements

- Cost effective
- Easy to build with
- Get traffic on it fast
- Unbreakable
- Weather-proof
- Sustainable
- Resilient

Life is changing

	1977	2017
No. of ingredients	Cement, water, rock, sand, AEA	Add SCMs, admixtures, int. aggregates, limestone
Opening	Weeks	Days (or hours)
Curing	Weeks	Days
De-icing	Sand, NaCl	Other chlorides, formates, acetates
Design life	20 years	100 years
Knowledge base	In house	Contracted out

Sustainability

Getting what we need

- Capacity and Longevity for the minimum :
- Cost
- Energy & resources
- Pollutants
- Negative impact to society

Simply good engineering (Getting more for less)

Sustainability

Proportioning

Aggregate Gradation

Tarantula Curve

Effect on Binder Content

Effect of Proportioning

- Alkali Aggregate Reaction
 - Reactive aggregates
 - Alkali hydroxides
 - Water

- D-Cracking
 - Some limestone aggregates
 - Cold weather

Alkali Carbonate Reaction

- Popouts
 - Porous aggregates

A Better Specification

- AASHTO PP84 published in March
 - Guide Specification
 - "Deemed to satisfy"
 - Avoids bonus discussion that is local
 - Provisional = meaning we can modify as we learn things

Delivering concrete to survive it's environment

Require the things that matter

- Transport properties (everywhere)
- Aggregate stability (everywhere)
- Strength (everywhere)
- Cold weather resistance (cold locations)
- Shrinkage (dry locations)
- Workability (everywhere)

Closing

We need to talk...

