Arsenic variability and geochemistry at a domestic bedrock well in New Hampshire

Prepared for Northeast Division
Geological Society of America Conference
March 19, 2018
Burlington, VT
Joe Levitt, James Degnan, Sarah Flanagan, Bryant Jurgens
U.S. Geological Survey
New England Water Science Center
Objectives

1. Over what time scales does water quality change?

2. What are the drivers of change?
 1. Geochemical processes
 2. Groundwater age
Background-
Arsenic in New England

From Flanagan and others (2012)
Background - Setting

KFW-87

A. Bedrock Geology

B. Surficial Geology

Explanations:
- Exeter Diomite
- Berwick Formation
- Flite Formation
- Kittery Formation
- Newburyport Complex (late Silurian)
- Newburyport Complex (early-late Silurian)

- Marine silt and clay
- Till
- Wetlands
- Ocean
- Bedrock
Background - Geophysical Log

- Various (5+) fracture zones
- Generally, >100 feet depth

![Geophysical Log Diagram]

- Specific Conductance
- Temperature
- Caliper
Background - Summary

- High arsenic occurs in locations with both:
 - Sources of arsenic (calcareous metasedimentary rock)
 - Geochemical state conducive to arsenic mobility

Low DO and high pH are arsenic’s happy state!*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>pH (standard units)</th>
<th>DO (mg/L)</th>
<th>As (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>8</td>
<td>0.1</td>
<td>37.2</td>
</tr>
</tbody>
</table>

*Ayotte and others (2003), Bondu and others (2017), Flanagan and others (2012)
Methods - Sampling

Continuous
- pH
- Specific conductivity
- Water temperature
- Dissolved oxygen
- Water level

Discrete
- Major ion chemistry
- Alkalinity
- Nutrients
- Arsenic and other trace elements
- As(III) and As(V) species
- Radionuclides
- Stables isotopes
- Age tracers
- Atmospheric gases

https://waterdata.usgs.gov/nwis/
Analysis - Correlations

ALWAYS ANOXIC! (DO <0.5 mg/L)

DO decreases when water level is up –

More anoxic water with recharge

Spearman’s rho=0.43
p<0.001
Analysis - Correlations

More arsenic with recharge
Analysis - Redox Processes

Terminal Electron-Accepting Processes (TEAP)

More reduced water with recharge
Analysis - Age distributions

Jurgens and others (2012)

Older water with recharge?
Going Forward – Further Analysis

- Trend
 - Occurs over sampling period
 - Repeating or monotonic

- Event
 - Occurs once
 - High or low value
Trends and Events

Arsenic Species

As (μg/L)

As(III) vs. As(V)

Calendar year

Date

Citrate

Manganeso (μg/L)

Calendar year

Date

Tableau 1

Tableau 2

Tableau 3

Tableau 4

Tableau 5

Tableau 6
As Species and Drought

- **As(V)** vs. **As(III)**, ug/L
- Rank sum test
 \(p = 0.007 \)

Graphs:
- Left: Time series of As(V) - As(III) from 2015 to 2017.
- Right: Precipitation before and after a drought event.
Further Analysis – Age Dating

Arsenic correlates

\(\rho = 0.81, p < 0.001 \)

Young and old ages correlate

\(\rho = 0.53, p < 0.05 \)

Glacial

Bedrock
Summary

• Highest arsenic occurs with high water levels (seasonally)
• Secondary arsenic peak at lowest water levels
• Arsenic highs are related to lower redox state (more reduced)
• Drought causes spikes and troughs in chemical constituents
• Age distributions were not particularly informative, other than as evidence of modern recharge.

• May not be indicative of all wells in the area
 • BUT similar patterns seen at 2 nearby public supply wells in network.
Questions?

Contact:

Joe Levitt
Physical Scientist
U.S. Geological Survey
New England Water Science Center
jlevitt@usgs.gov
603-226-7802