- Surficial Geology of Hoosick Falls, NY with
 - Surficial Geologic Map at 1:12,000 and
- Interpretive Cross Section through Village Well Field
 - **David J DeSimone, PhD**
 - **DeSimone Geoscience Investigations (DGI)**
 - hawkeye272david@yahoo.com
 - prepared under contract to **Hoosick Falls Central School District completed January 2017**

- > Generate 1:12,000 surficial geologic map to assist with PFOA studies
- > Analyze & interpret Village well field sediment facies
- > Construct cross section through well field & Saint Gobain factory
- > Identify aquifer prospects for new Village well
- > Educational role for local students = use surficial geology to understand the Village unconsolidated aquifers

Purpose of Research

Elements of the Landscape

- * Hoosic & Walloomsac rivers
- * Taconic uplands
- * Valley floor sediment < glacial lake bottom < fluvial terraces < flood plain alluvium
 - (map from USGS)

blue

Bedrock Geology (Potter's map)

- * Predominantly fine grained rock shale/slate of Walloomsac & Nassau Formations
- * SW corner is Rensselaer Graywacke
- * Minor valley limestones shown in

Soils Map Distilled for Materials

- * Till uplands gray & white
- * Glaciolacustrine green
- * Glaciofluvial orange
- * Alluvium yellow
 - (map from USGS)

Surficial Geology Map 2017

Map units:

- * Outcrops darkest gray
- * Till thick or thin grays
- * Ice contact SG purple
- * Lake silt-clay blue
- * Fluvial terraces green
- * Floodplain alluvium yellow

Who wants to digitize this? See me!

Glaciolacustrine Sediments

- glaciolacustrine silt-clay settling out of very fine particles distant from the glacier - distal - and in deep water
 - Slow settling Stokes Law...clay takes forever!
 - $-K = 10^{-5}$ to 10^{-8} cm/s = AQUICLUDE or AQUITARD
- sand-gravel proximal to glacier, short transport distance, typically derived from subglacial stream or lateral meltwater stream
 - Fast settling
 - K = 10⁻⁴ or better! = AQUIFER (confined or unconfined)

Glacial Lake

As ice recedes, proximal facies sediment becomes overlain by distal facies sediment

Glaciolacustrine Stratigraphy

- As glaciers retreat, the dominant source of sediment in a glacial lake moves farther away
- You generally find finer-grained deposits towards the top of a sequence
- In this way, proximal sediment can become a confined aquifer with distal sediment the aquiclude

Silt-Clay Silt-Sand Sand-Gravel

Valley floor

Glacial Lake Bascom varves near NAPA store

Subaqueous fan with overlying alluvial fan in Petersburg. Possible recharge to deep confined aquifer but not present in Hoosick Falls.

Alluvium - Fluvial Terrace Package - Unconfined Aquifer

sands, silts and clays (decreasing K's) ...a Fining Upwards Sequence

* Typically 1-5m thick and truncate sediment below

- * Channel bottom deposits are coarsest (highest K), topped by

Fluvial Terrace

Contact exposed north of Seifert's Auction House, Glacial Lake Bascom rhythmites at base are truncated and overlain by fluvial terrace pebble gravel. **Bascom lacustrines are Upper** Pleistocene while terrace gravels are likely Holocene.

Two fluvial terrace surfaces in cemetery are both likely Holocene. Shovel test pit along slope of upper terrace indicated glacial lake clay-silt present with bedrock in farther gully upstream. Site was previously considered as possible recharge zone for the deep Village aquifer but this stratigraphy suggests otherwise.

Well field and Saint Gobain Surficial Geology Detail

> Factory on fluvial terrace

> Well field on flood plain

> No obvious recharge area to deep overburden aquifer

Cross Section

*Saint Gobain through well field

*What's the stratigraphy & origin of the sediments that comprise the village aquifer & adjacent units?

Map courtesy of USGS

Why did the confining silt-clay layer become semi-confining?

> Glacial history matters! Facies matter ! * Ice recession to the site of Hoosick Falls was accompanied by rapid drop of Lake Bascom from 900ft Potter Hill level through 700ft, 665ft, 625ft short-lived levels controlled by bedrock thresholds (DeSimone & Dethier, 1992; Saffer & Madera, 1994, 1995) & finally to 520ft controlled by ice effectively ending the lake.

> The lake became very shallow very quickly and fine sand replaced deepwater silt-clay deposition.

Conclusions or Questions That Remain?

> Questions originally posed in January 2017 been answered by all of the reports you've heard today? * Pathways of PFOA migration evaluated? * Bedrock profile & lithologies/structures known? * Bedrock aquifer contaminated?

> Source(s) of PFOA in wells located some distance from factories understood?

> Are there better aquifer prospects farther south than studied to date even if they have logistical issues?

