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BACKGROUND

• Marcellus and Utica Shale Natural Gas Liquids (NGL’s) 
produced in the tri-state area of OH, PA and WV

• NGL’s can support a global petrochemical industry

• Strategic location to plastics manufacturing centers

• Regional cooperation agreement signed in 2015

• Subsurface storage will be a necessary component

• Appalachian Oil & Natural Gas Research Consortium formed 
to evaluate subsurface storage potential
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➢ Correlate stratigraphy

➢ Map thickness & structure

➢ Characterize the reservoir

➢ Development and 
application of 
rating and ranking criteria
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AREA OF INTEREST



THREE OPTIONS FOR NGL STORAGE

• Mined-rock caverns (carbonate rock) 

• Solution-mined caverns (bedded salt)

• Depleted gas fields (siliciclastic units)
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GEOLOGIC INTERVALS 

Mined-rock caverns

Greenbrier Limestone 

(≥40 ft thick; 1,800 – 2000 ft deep)

Salt caverns

Salina Group salts (≥100 ft thick)

Depleted gas reservoirs or storage fields

Keener to Berea sandstones

Upper Devonian sandstones (Venango, 
Bradford, Elk)

Oriskany Sandstone

Newburg sandstone

Clinton/Medina Group

Rose Run-Gatesburg sandstones
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RESERVOIR 
CHARACTERIZATION
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• Unique characterization          

each type of storage container

➢ Depth – structure maps

➢ Thickness – isopach maps

➢ Extent – facies evaluation 

➢ Preliminary assessment –

Environments of deposition, 

post-depositional processes



420 Ma

Late Silurian 11
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Modern Analog: Persian Gulf

Sabkha

http://www.southampton.ac.uk/~imw/Sabkhas-Bibliography.htm



Well penetrating the F4 Salt, where lithologies tied into the
geophysical log identify zones of anhydrite and dolomite.

Geophysical Logs
a: Coarse halite crystals with evenly disseminated black anhydrite
pieces that give the sample a dark gray color;

b: post-lithification fracture includes some salt crystals along the
fracture zone;

c: brown-gray calcareous shale, thinly laminated, sometimes wavy,
partially replaced by salt & pepper carbonate(?)-anhydrite mixture.
The shale is interbedded with the carbonate-anhydrite beds.

Core Samples

The Salina is a bedded salt 



SOLUTION-MINED CAVERNS
SALINA SALT

• Cavern size limited by salt thickness 

• Salt itself forms sealing mechanism for this type of 
container

• Need thick intervals of pure salt

• Need large area to create cavern with buffer zone 
between cavern and edge of salt

• Thickness, purity and extent are key factors

14



SALINA F4 SALT
THICKNESS

• Only Salina salt deposit 

likely to occur in 

thicknesses ≥ 100 ft. 

• Four areas with net 

thickness ≥ 100 ft.
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SALINA F4 SALT 
DEPTH

Depths to top of F4 Salt relative to Mean Sea

Level (MSL) range from -3,700 to -6,000 feet

• Below deepest occurrence of fresh 

drinking water

• Few gas wells penetrate salt, so 

limits vertical migration routes

• Increase in salt plasticity limits 

lower cavern depth to <7,000’

Area 1 2 3 4

Average 

Depth (ft) 5,300’ 6,200’ 6,650’ 6,600’



SW-NE CROSS SECTION ALONG STRIKE
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F4 Salt                   Salt Interbedded dolomite and anhydrite



Cross Section

F4 Salt                   Salt Interbedded dolomite and anhydrite

AREA 1

Isopach



Cross Section

F4 Salt                   Salt Interbedded dolomite and anhydrite

AREA 3

Isopach



SALINA SALT CAVERNS
• Mapped net thickness of upper F4 salt (conservative approach)

• Identified four areas where upper F4 salt >100 ft

• Salt thickness changes abruptly east and west of the main trend

• Anhydrite and dolomite increases outside the 100 ft. footprint

• 20-25 foot lower salt present below the persistent dolomite anhydrite layer

• Important to leave buffer zone between caverns and edge of salt basin

• Pressure, temperature, and cavern shape affect cavern stability
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420 Ma

Late Silurian 23
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Modern Analog: U.S. East Coast (Massachusetts)

Coastal Sand Bodies

http://www2.oberlin.edu/faculty/dhubbard/PersWebPage/Photos/EssexInlet.jpg

NEWBURG
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Modern Analog: U.S. East Coast (Massachusetts)

Coastal Sand Bodies
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NEWBURG:  example of depleted gas 
fields in a sandstone reservoir

• Porosity / permeability

• Geophysical logs
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NEWBURG:  example of depleted gas 
fields in a sandstone reservoir

• Porosity / permeability

• Thin-section analyses
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NEWBURG:  example of depleted gas 
fields in a sandstone reservoir
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• Thickness (gross isopach map)

• Areal extent (updip dry holes & 
wells with salt water downdip 
delineate container extents) 

• Close to pipeline infrastructure

• Seals (upper, lower and lateral) 
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NEWBURG:  example of depleted gas 
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NEWBURG:  example of depleted gas 
fields in a sandstone reservoir
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• Thickness (gross isopach map)

• Areal extent (updip dry holes & 
wells with salt water downdip 
delineate container extents) 

• Close to pipeline infrastructure

• Seals (upper, lower and lateral) 



NEWBURG:             W-E Cross-Section
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North Ripley Field

Newburg Sandstone



NEWBURG:         NW-SE Cross-Section
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Rocky Fork and

Cooper Creek

Net Thickness

Newburg Sandstone
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Field
Average 

producing 
depth (ft)

Average pay 

thickness
(ft)*

Pressure (psi)
Porosity 

(%)
Permeability 

(mD)*
Initial pressure 

(psi)
Trap type

North Ripley 5,379 7 2,300 14.0 2,329 Stratigraphic/

Structural

Rocky Fork 5,623 5 2,400 18.0 46 2,435 Stratigraphic/

Structural

Cooper Creek 5,754 6 2,500 15.0 2,491
Stratigraphic/

structural

Kanawha Forest 5,378 8 2,300 11.0 14 2,329 Structural

*from Patchen (1996)

NEWBURG:    
Depleted Sandstone Reservoirs

• Good peak storage:  High porosity and permeability in thin sandstone 

reservoir yields small container with high deliverability

• Updip dry holes (sand pinchout) & wells with salt water downdip structurally 

delineate lateral container extents 

• Evaporites and carbonates make good vertical seals

• Close to pipeline infrastructure



325 Ma

Late Mississippian 35
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Modern Analog: Bahama Banks
Carbonate Platform

Wynn, 2007



GREENBRIER LIMESTONE 
(MINED-ROCK CAVERNS)

• Characterize facies using 

geophysical logs (RHOB, DPHI, 

PE) and drillers’ descriptions

• Carbonate ramp 

environment of 

deposition

Schematic illustration of Mississippian facies distribution of the
Appalachian basin (Wynn, 2003). The main facies types within the
AOI were deposited in inner- to mid-ramp settings.
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GREENBRIER LIMESTONE 
(MINED-ROCK CAVERNS)

• Prepare regional 

structure and 

isopach contour 

maps

• Optimum net 

thicknesses –

≥40 ft

• Optimum depths –

1,800 – 2,000 ft
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Wynn, 2003

Wynn, 2003
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GREENBRIER MINED-ROCK CAVERNS

• Identified three main facies; mapped net 
thickness of each

➢ Upper grainstone (top seal)

➢ Lime mudstone (mine)

➢ Lower grainstone (bottom seal)
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GREENBRIER LIMESTONE – THREE FACIES

Figure 7. Net thickness map of the
Greenbrier lime mudstone facies package.

Appalachian Storage Hub (ASH) 
Study

Appalachian Storage Hub 
(ASH) Study

Appalachian Storage Hub 
(ASH) Study
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Trap integrities of Mined Rock Fields

Good 

Trap

Good Trap Okay TrapNo top 

Trap
No bottom Trap No Trap

Grainstone facies                 Lime mudstone facies



MINED-ROCK CAVERNS: GREENBRIER 
LIMESTONE

• Not all limestones are the same

• They differ in grain size, pore space, etc. due to 
variations in where and how they were deposited

• Our goal was to find the best type of limestone for 
storage – lithology is important!

• A mined-rock cavern needs a good seal, so 
overlying/underlying unit properties are also 
important
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SUMMARY - POINTS TO CONSIDER
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• Examined three categories of storage options, 
mined caverns, solution caverns, depleted siliclastic reservoirs

• Storage capacity and deliverability will 
ultimately depend on the NGL product(s)

• Storage capacity and deliverability may 
require more than one facility and/or more 
than one geologic container per facility 

• Optimal reservoir types may (or may not) be 
co-located above or below one another 
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AREA OF INTEREST
CORRELATION DIAGRAM
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AREA OF INTEREST
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THANK YOU!

Robin Anthony – Geoscientist (robanthony@pa.gov)
Pennsylvania Geological Survey (Pittsburgh, PA)
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Project website available at www.wvgs.wvnet.edu
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