

Image: http://ais.wetter.de/masters/514430/switzerland-snowfarming.jpg

Feasibility of **Over-Summer Snow Storage** in Craftsbury, VT

Hannah Weiss, Paul Bierman, Yves Dubief, Scott Hamshaw

Introduction

Warming climate creates necessity for adaptation
Ski industry is highly sensitive to climatic changes

"Skiers embrace the warm temperatures during the first weekend of the 2015-2016 ski season at Mount Snow Resort in West Dover, Vt. on Friday. (Photo: Kristopher Radder/AP)" Image from: Burlington Free Press, "Whiff of Winter interrupts warm spell", 2015

Introduction

- Problems:
 - → Less snowfall
 - → Warmer winters
 - → Thawing from added heat
 - → Winter begins later
 - → Winter ends earlier

- Adaptation strategy: over-summer snow storage (a.k.a. "snow-farming")
- Successful in nordic resorts at high elevation, high latitude locations

"Skiers embrace the warm temperatures during the first weekend of the 2015-2016 ski season at Mount Snow Resort in West Dover, Vt. on Friday. (Photo: Kristopher Radder/AP)" Image from: Burlington Free Press, "Whiff of Winter interrupts warm spell", 2015

Snow-storage

 Traditional approach: Make snow at beginning of season

→ Snow-storage approach:

1) Make large pile of snow in late winter

2) Store beneath insulating layers (ie. woodchips) throughout summer

3) Uncover in late fall, spread along trails

Image from: "Snowfarming – weisse Weihnachten auch ohne Schneefall", 2014, www.srf.ch

The Craftsbury Outdoor Center

ICHEN LATERARY

Caleb Kenna/The New York -Times, 2013

The Craftsbury Outdoors Center

Goal: Can we keep snow over the summer at Craftsbury?

Duration of project: June, 2017 through May, 2020

Long-Term Objectives

- Gather current, local weather and soil temperature data at the Craftsbury Center for undergraduate research
- 2. Use data to create computer models of summer snow-melt
- 3. Use models and previous century's climate data to predict snow melt rate in varying conditions
- 4. Run cost/energy analysis based on melt-rate to determine feasibility of snow-farming

MASTER'S THESIS WORK

What affects snowmelt?

What affects snowmelt?

Methods

- Local past decade of weather conditions:
 - Weather station at Craftsbury а. **Outdoors Center monitors:**
 - Air Temp Ι.
 - ii. Precipitation
 - iii. Humidity
 - Wind Speed iv.
- Statewide past 134 years of weather conditions:
 - Fairbanks Museum's "The a. Northern New England Weather Center Records, 1894 - 1997, ongoing"

((•)) The Craftsbury Outdoor Center KVTCRAFT2 About this PWS

Forecast for Craftsbury Common, VT > 44.682 -72.359 > 1100 ft

PWS Data PWS Widgets WunderStation

PWS viewed 285 times since March 1, 2018

°F 18.5

Feels Like 18.5 °F

14 °F 81% Precip Rate: 0 in/hr Precip Accum: 0.00 in 29.68 in

Waning Crescent | 0% Illum

Methods

→ How to measure Solar Radiation?

Ground Temperature

→ June, 2017 to present:

5 cm below surface 20 cm below surface 50 cm below surface 105 cm below surface

Results - Ground Temperature

Results - Air vs Ground Temp

Depth Below Surface vs Standard Deviation

6

SD of air is twice as large as SD for shallowest sensors

- SD similar for both sites
- SD decreases with soil depth

Depth Below Surface (m)

Results - Air vs. Ground Temp

Results

- → Strong correlation between air temp and shallowest sensor
- Lesser correlation between air temp and 20 cm below surface sensor

Identification	Value
CHIP: 5cm Slope	0.48
CHIP: 5cm R^2-value	0.88
CHIP: 20 cm Slope	0.22
CHIP: 20 cm R^2-value	0.55
POND: 5cm Slope	0.40
POND: 5cm R^2-value	0.79
POND: 20cm Slope	0.28
POND: 20cm R^2-value	0.62

Methods

→ Fall 2017: LiDAR

Used to measure snowpile volume
Collects 80,000 survey points in 3 minutes

18

Results - LiDAR POND Site

Pond site sensors

19

Results - LiDAR POND Site

~5,600 cubic meters (without piling)

Spread 5 meters wide and 0.5 m deep yields 2 km of trail With pile, could yield 4 km of trail

4 km of trail is enough for major races

Q: How much will melt?

Snow pile imaging

Conclusions

- We have the first year-long soil temperature data collection in New England
- We have data to model snowmelt over summer in piles and will test model against reality in summer 2018

Thank you to:

- → UVM Geology Department
- → UVM Engineering Department
- → UVM Spatial Analysis Lab
- UVM Office of Undergraduate Research
- → Craftsbury Outdoors Center