EVALUATING THE IMPACT OF TRIBUTARY DAM REMOVALS ON TIDAL WETLANDS WITHIN THE HUDSON RIVER ESTUARY Brian Yellen¹, David Ralston², Jon Woodruff¹, Sarah Fernald³

¹University of Massachusetts, Amherst, ²Woods Hole Oceanographic Institution, ³New York State Department of Environmental Conservation

Guiding Questions

Dams in the Hudson River estuary watershed

NERRS Science Collaborative

Marsh managers

and shoreline

When a dam is removed, the freed river will transport more sediment to the estuary

- 1. How does the sediment mass released compare with sediment input from the watershed?
- 2. Where does it go in the estuary?

Dam removal specialists, dam owners & consultants	Restoration and program managers & advocates & policy makers	Advisory Committee a	t meeting in June 2017.
Advisory Committee	Dam owners, consultants, and regulators	Natural resource managers	State & Federal agencies
	consultants, and		

Measuring sediment in impoundments

Study watersheds (year of project).

Summit Lake (example impoundment)

Goals:

- Map sediment volume
- Characterize sediment
- Evaluate changes in deposition rate

Summit Lake watershed (top) and *impoundment (bottom), with core locations* and ground penetrating radar (GPR) tracks

- range of geology, land use, and relief characteristics
- Estimate watershed yields and dam sediment trapping
- Evaluate sediment needs of tidal marshes

Stockport site characteristics

		Sediment	Sed			
		Bulk ρ	LOI	Watershed	Slope	
No.	Site	(g/cc)	(%)	Area (km²)	(m/km)	% forest
1	Black River Pond	1.19	25.6	15.5	124	95*
2	Hand Hollow	1.29	3.0	0.34	191	99.6
3	McCagg Pond	1.46	5.3	9.2	72	48.5
4	Stottville	1.54	5.4	438	160	64.1
5	Summit Lake	1.53	7.5	56	198	76.2
6	Red Mills Pond	1.45	8.7	150	177	67

Stockport Marsh deposition

Stockport watershed, with all registered dams and project study sites (listed in table).

Observed Yields (impoundment trapping)

1860,dam

metals

Modeling sediment in the estuary

-74.2 -74 -73.8 Hudson River estuary domain with tributary inputs and alongriver distance (km)

How do dam releases affect turbidity in the estuary? For the same simulation (3x background from Stockport for 0.02 mm/s) we compare suspended sediment concentration (SSC) from the dam release and all other sediment sources at 3 locations (marked above) along the estuary and see that the impacts are only notable during discharge events near the tributary mouth.

Woods Hole, Dceanograph

- 3-D hydrodynamic and sediment transport model
- Tributary inputs increased to simulate dam removal
- Model tracks deposition of different size classes

For example, dam releases from the **Stockport watershed** (Kinderhook Creek) are simulated as **3x the typical sediment loading**, testing size classes of coarse silt (settling velocity = 2 mm/s), fine silt (0.2 mm/s) and clay (0.02 mm/s). This case is run for a typical spring freshet, and sediment deposition from the release is plotted along the estuary after about 1 month (above). Seaward transport and the location of deposition are highly sensitive settling velocity, highlighting the importance of grain size measurements in the field studies.

Department of Environmental Conservation

NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM