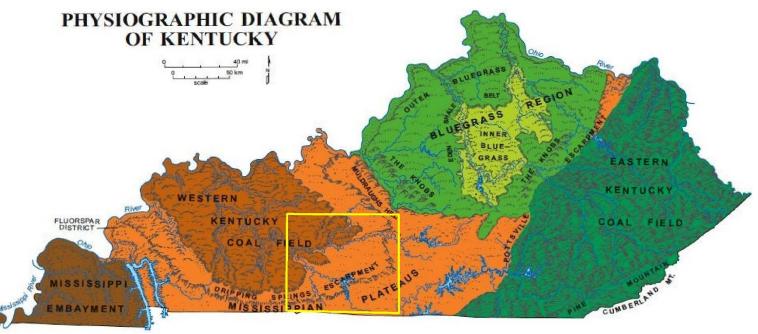
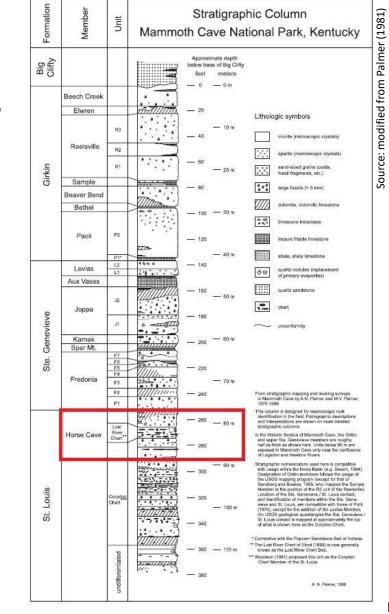
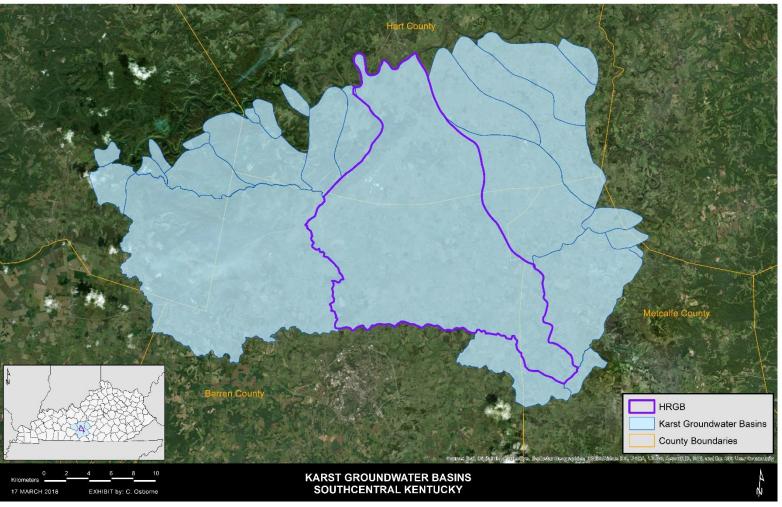
Hydrogeology of the Hidden River Groundwater Basin, Horse Cave, Hart County, Kentucky

Cesalea N. Osborne Department of Geography and Geology Western Kentucky University April 12th, 2018


Department of Geography and Geology GEOGRAPHY GEOLOGY METEOROLOGY GIS

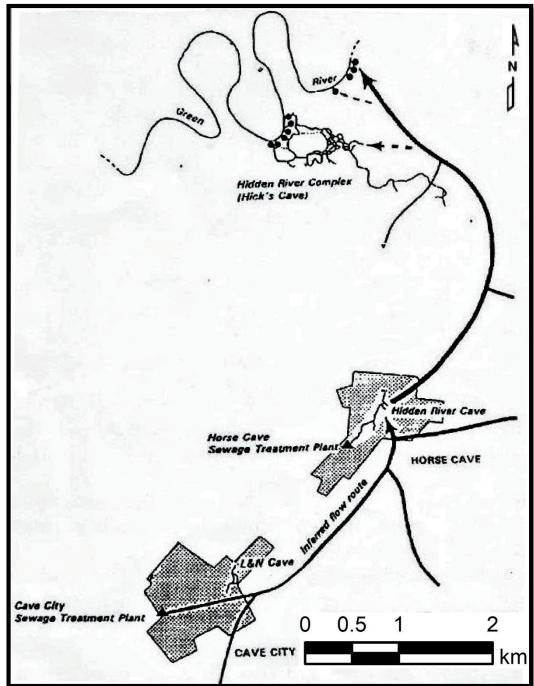

Geographic Boundaries in Karst

- ~263 watersheds transcend the political boundaries of two or more countries, many of which lie in karst regions (Jarvis et al. 2005).
- Karst makes up 15-20% of the Earth's ice-free landscape and karst aquifers provide 25% of the world's population with drinking water (Palmer 2007).
- Conflicts regarding transboundary water resources are based on:
 - Boundary location
 - Distribution
 - Availability
 - Quality
- Examples include:
 - Southeastern Europe (distribution) (Milanović 2016)
 - Yucatán Peninsula (availability) (Bauer-Gottwein et al. 2011)
 - South-central Kentucky (quality) (Quinlan and Rowe 1977)


South-Central Kentucky Karst

- Three physiographic regions: Mammoth Cave Plateau, Dripping Springs Escarpment, Pennyroyal Plateau
- Characterized by a shallow, intensely karstified carbonate aquifer
- Extensive karst developed in the Girkin, Ste. Genevieve and St. Louis formations

Groundwater Basin Delineation in South-Central Kentucky

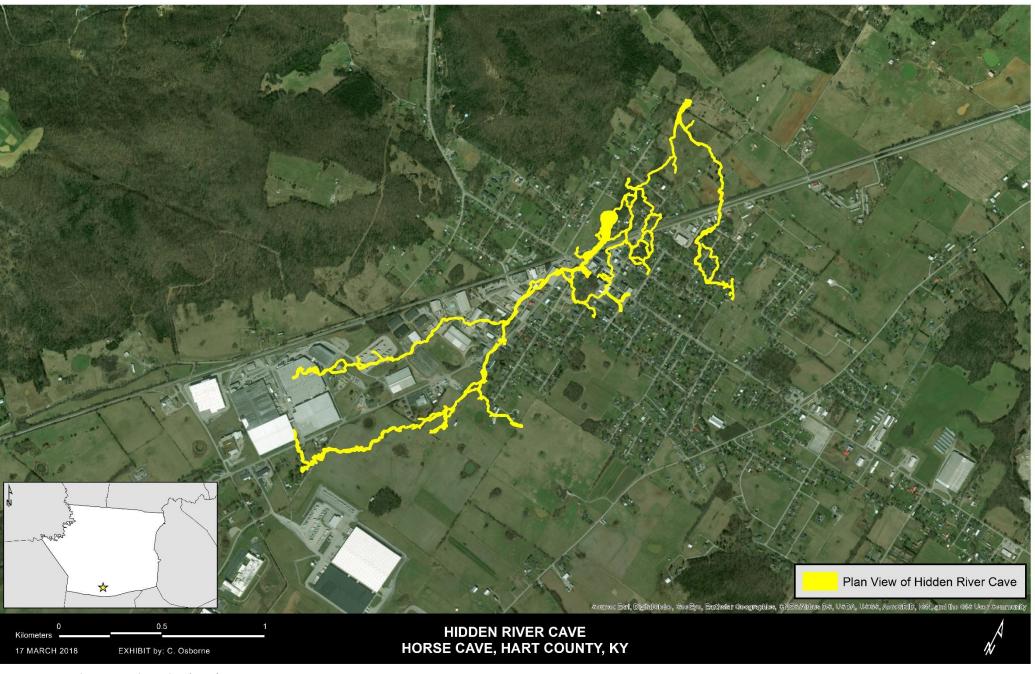


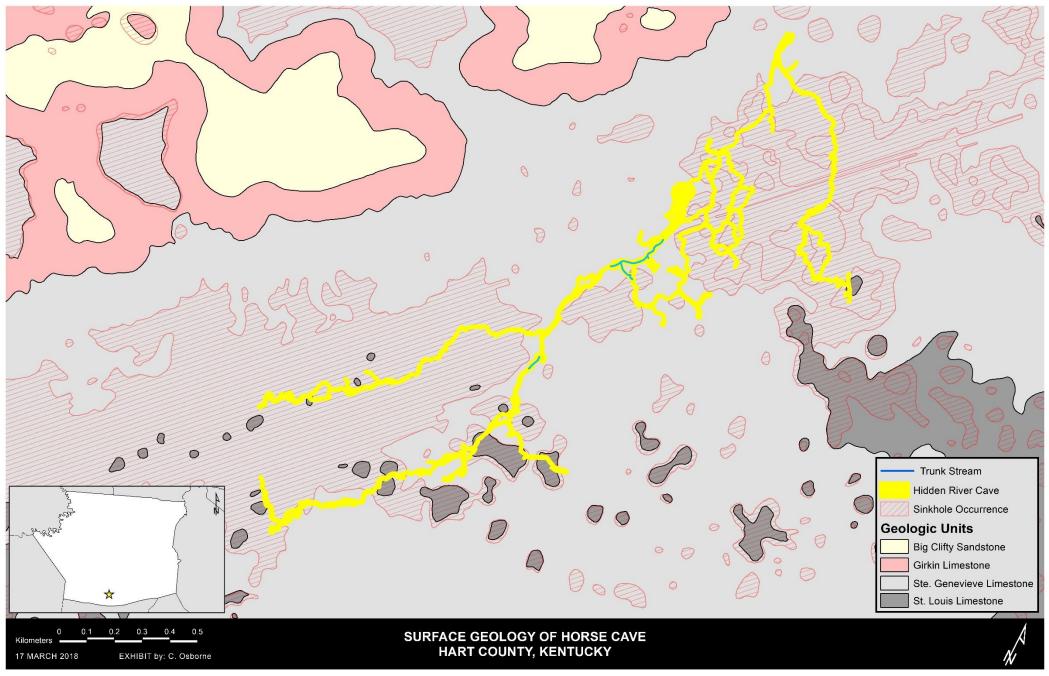
Source: created in ArcMap by author (2018)

 >500 dye traces from 1975-1987 to determine sources of contamination (Quinlan and Rowe 1977)

- Delineated 28 major groundwater basins
- Of 28, Hidden River was the most anthropogenically impacted (White 1989)
- Transboundary groundwater basin → spans multiple counties in south-central Kentucky

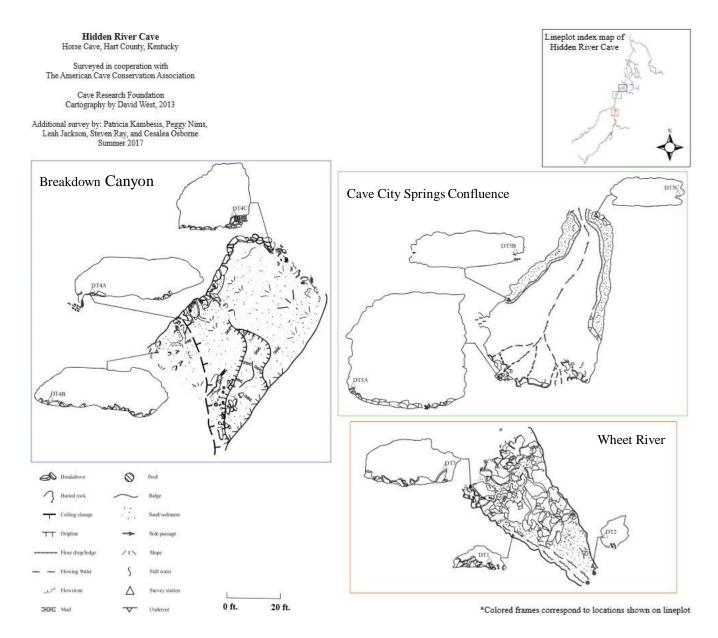
- The Hidden River groundwater basin includes:
 - L&N Cave
 - Hidden River Cave
 - Hidden River Complex
- Resurges at 46 springs along the Green River
- Historically, waste from Cave City and Horse Cave included:
 - Injection of sewage, heavy metals, creamery waste, oil refinery waste, etc. into sinkholes (Lewis 1995)





Research Question and Hypothesis

How does local land-use impact recharge to Hidden River cave?


- Changes in land-cover have altered recharge relationships with Hidden River Cave
- Features that may facilitate recharge include sinkholes, injection wells and storm drains (Raedts and Smart 2015)

- 1. Karst Hydrogeologic Inventory (KHI)
 - Surface/subsurface survey
 - Base map construction
- 2. Discharge measurements
 - To determine if multiple tributaries contribute flow to the main cave stream
- 3. Groundwater dye tracing
 - Background fluorescence monitoring
 - Dye injection
- 4. Geographic Information Systems (GIS) analysis
 - Land use analysis
 - 3D modeling of subsurface recharge

Cave Survey

KHI and Groundwater Dye Tracing

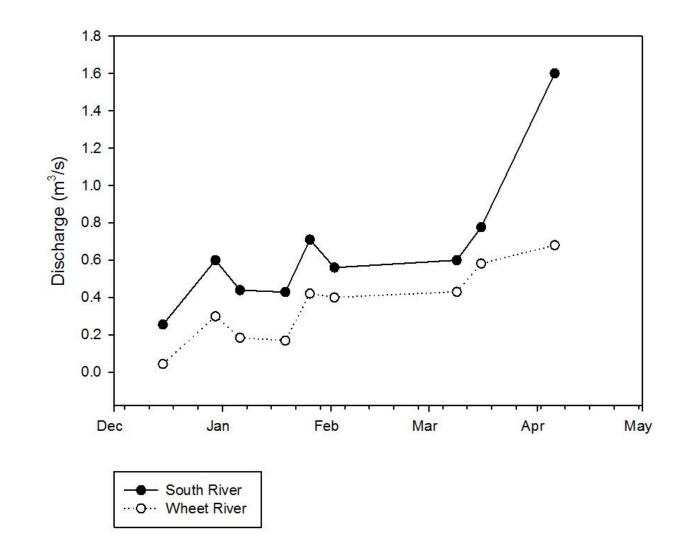
Results of Background Analysis

- 6-dye background analysis: OB, FL, EO, R28, RWT, SRB
- Several samples contained OB and FL (Raedts and Smart 2015)
 - Background fluorescence at 7 sites (OB, FL, R28, RWT)
- EO, RWT and SRB to be used for dye injection

Lab ID	Feature Name	Tinopal CBS-X			Fluorescein			Eosine			D&C Red 28			Rhodamine WT			Sulphorhodamine B		
		Results	Conc in ppb	Peak Center (nm)	Results	Conc in ppb	Peak Center (nm)	Results	Conc in ppb	Peak Center (nm)		Conc in ppb	Peak Center (nm)	Results	Conc in ppb	Peak Center (nm)	Results	Conc in ppb	Peak Center (nm)
EH-001-0	WHEET RIVER	ND	1.532	NPI	ND	0.052	NPI												
EL-002-0	WHEET RIVER B	В	1.131	403.6,POR	ND	0.044	NPI												
EL-003-0	WHEET RIVER C	IB	1.023	399.4	ND	0.038	NPI												
EH-005-0	WHEET DRIP	IB	3.799	401.6							IB	0.753	559.6	В	0.373	559.6,POR			
EH-006-0	BOARD ROOM	IB	4.757	401.4	В	0.012	522.6,POR				ND	0.550	NPI	ND	0.260	NPI			
EH-007-0	WATERFALL ROOM	ND	0.599	NPI				ND	1.761	NPI							ND	0.027	NPI
EL-008-0	WELL CASING A	В	1.096	404.8,POR	ND		NPI				IB	7.555	564.6	IB	3.826	564.6			
EL-009-0	WELL CASING B	IB	0.721	395.6	ND	0.027	NPI				IB	0.962	563.6	IB	0.485	563.6			
EL-010-0	WELL CASING C	IB	0.885	398.6	IB	0.120	514.4												
EL-011-0	BREAKDOWN DRIP	В	0.549	390.8,POR	ND		NPI				ND	0.053	NPI	ND	0.021	NPI			
EL-012-0	BREAKDOWN CANYON	ND	0.493	NPI			525.8,POR	ND	0.043	NPI									
EL-013-0	SOUTH RIVER	ND	0.296	NPI	IB	0.026	521.0												
EL-014-0	EAST RIVER				ND	0.031	NPI	ND	0.030	NPI									

Source: created by author using CHL criteria (2018)

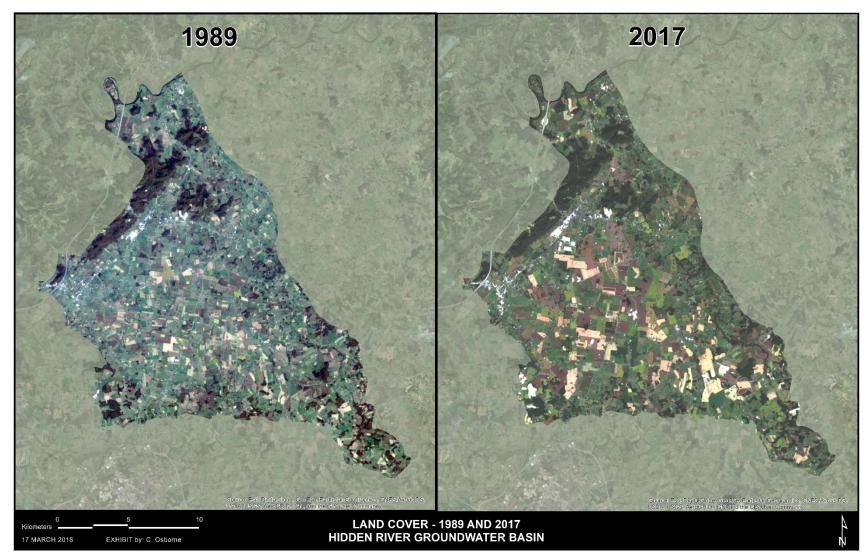
Completed Dye Injections



Discharge Measurements

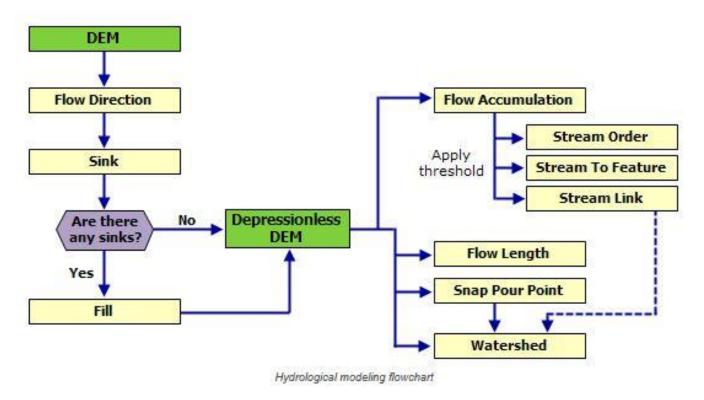
Preliminary Discharge Data

Cave Stream Discharge Hidden River Cave



Source: image taken by author (2018)

Source: image taken by author (2018)


Land-use Analysis

- Remote sensing using supervised and unsupervised classification
- Aerial imagery from USGS GloVis
- Calculation of percentage of developed areas

Source: created in ArcMap by author (2018)

3D Modeling with ArcScene

Source: ESRI (2017)

- Model recharge to Hidden River Cave
 - 30ft DEM from KyGeoNet
- Watershed analysis in ArcMap
 - Determine points of water accumulation
 - Inclusion of dye trace data
- ArcScene
 - produce a 3D model of recharge to Hidden River Cave

Why is this study important?

- 1. Refine existing dye trace maps from Quinlan and Rowe (1977) to provide more detail on groundwater recharge to the Hidden River groundwater basin
- 2. Discharge measurements can determine if more tributaries exist, which can provide more information about contaminant pathways
- 3. Documentation of changes in land-use can provide data about the impacts that development may have on recharge
- 4. Three-dimensional model of recharge to Hidden River Cave can also provide details of overall hydrogeology
- 5. Provide data and graphics to enhance the educational displays at the American Cave Museum
- 6. Provide scientific data toward informed management of Hidden River Cave
- 7. Methods can be used in other transboundary karst regions

"Be Kind to Karst!" – Aley (2015)

Cave City Springs, Hidden River Cave Source: image taken by author (2017)

References

- Blair, R., Goodmann, P., Marbert, B., O'dell, P., Ray, J. 2012. Integrated Surface Water and Groundwater Assessment of Large Springs in the Green River Basin (BMU4, Round 2). Frankfort, KY: Kentucky Division of Water.
- Environmental Systems Research Institute (ESRI) 2017. An Overview of the Hydrology Toolset. Redlands, CA: Esri. Available at: https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/an-overview-of-the-hydrologytools.htm
- Jarvis, T., Giordano, M., Puri, S., Matsumoto, K., Wolf, A. 2005. International Borders, Ground Water Flow, and Hydroschizophrenia. *Groundwater*, 43(5), 764-770.
- Lewis, J. 1995. The Devastation and Recovery of Caves and Karst Affected by Industrialization. *Proceedings of the 1995 National Cave Management Symposium*, 214-227.
- Palmer, A.N. 1981. A Geological Guide to Mammoth Cave National Park. Teaneck, NJ: Zephyrus Press.
- Quinlan, J.F., Rowe D.R. 1977. Hydrology and Water Quality in the Central Kentucky Karst: Phase I. *Research Report No. 101*. Lexington, KY: University of Kentucky.
- Raedts, C., Smart, C. 2015. Tracking of Karst Contamination Using Alternative Monitoring Strategies: Hidden River Cave, Kentucky. *Proceedings of the 14th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst*, 327-336.
- White, E.L., White, W.B. 1989. Karst Hydrology: Concepts from the Mammoth Cave Area. New York, NY: Van Nostrand Reinhold.