Effect of Soil Organic Carbon Distribution on Riparian Nitrate Attenuation During Stream Stage Fluctuations
Nicholas Hammond, Chuanhui Gu, and Sarah Evans
Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA

1. Introduction

Riparian zones occur at the interface between surface water and groundwater. These zones are critical locations for the occurrence of biogeochemical processes such as denitrification. Denitrification is an important natural process that removes nitrate pollution in streams and groundwater resulting from anthropogenic inputs. Stream stage fluctuations leading to increased bank storage have a strong effect on the removal of river-borne nitrate through facultative anaerobic microbial denitrification, referred to as “hot moments.” Since the availability of oxygen and organic carbon are considered to exert the greatest control on denitrification rates, denitrification can be significant when the water table rises to reach the organic carbon-rich topsoils. Previous studies on denitrification during hot moments have focused on hydrologic controls as well as stream dissolved organic carbon input, but not the contribution of organic-carbon rich riparian soils.

Our goal is to quantify the effect of the vertical distribution of soil organic carbon on these denitrification hot moments during increased bank storage and provide a conceptual model to be used in further studies.

2. Study Site

The field data used in this study was collected from Boone Creek in Boone, NC, USA (Figure 2). Boone Creek is a third order perennial stream in the Upper South Fork of the New River watershed, located in the Blue Ridge Province of Western NC. The area of the Boone Creek sub-basin is 5.3 km² (Gu et al., 2015).

Annual average rainfall is 1000-1400 mm/yr. Normal mean annual air temperature is 9.4°C, ranging from a daily average temperature of 20.3°C in July to -0.4°C in January (Gu et al., 2015). The surrounding area is mountainous, with an average slope of 27% (Gu et al., 2012). Boone Creek flows through an urbanized area, including the Town of Boone and the Appalachian State University campus, with a high degree of impervious surfaces nearby. The percentage of impervious area within a 12.2 m buffer of all streams in the drainage area is 32.2% (Gu et al., 2015).

Figure 2. Boone Creek, NC on Feb. 16, 2018

3. Modeling Methodology

Model Domain & Boundary Conditions
A 3-D finite difference model, MODFLOW-NWT, was used to simulate groundwater flow. The model domain was 50 m wide, 5 m tall, and 2.5 m across (Figure 3). The grid consisted of 1 row, 78 columns, and 25 layers divided into 1,950 cells. The subsurface was approximated as homogenous and isotropic.

Solute Transport

Solute transport and the first-order decay reaction were modeled using the groundwater solute transport simulator MT3D-USGS. A sink-source mixing package was used at the river boundary to allow for solute to enter and exit the groundwater system, depending on the direction of flow. For the first simulation, a constant profile of 3% organic matter (OM) was assigned to a depth of 2 m and +1% OM below 2 m. For the second simulation, the OM content ranged from 10% at the surface to 1% at 5 m depth. The total OM content was the same for each simulation.

Chemical Reaction

The contribution of carbon (C) from OM-rich topsoils is kinetic-controlled. In this study, we simplified the denitrification process by assuming that the decrease in nitrate over time could be described by first-order kinetics. The relationship between total soil carbon (TOM) and the nitrate decay constant, k, was derived using this regression equation defined by Stanford et al. (1975).

4. Results

The simulated OM profile that decayed with depth exhibited greater nitrate removal throughout the simulation. The total nitrate removed via denitrification was 41.2 g and 63.1 g for the uniform and decaying OM profiles, respectively. This indicates that spatial distribution, in addition to total amount, of OM needs to be considered in quantifying riparian "hot moments."

References

Acknowledgements
This research was conducted in collaboration with USDA NRI NCW and Coffey Laboratories. The Office of Student Research at Appalachian State University provided funding for research and presentation at this conference.