

Mineralogy Controlled Dissolution of Inhaled Uranium in Simulated Bodily Fluids

Eshani Hettiarachchi

Graduate Student Department of Chemistry New Mexico Tech

Respirable Particles

region

Hoffmann (2011)

2

Why Uranium is Bad to Inhale?

Evidences from Mice and Rat Studies

DNA strand break in lung cells, kidney cells Macrophages death Histological alterations

Why Uranium is Bad to Inhale?

Locations of the Collected Dusts

Four Big Spring Number Eight Passive Dust Collectors at Four Sampling Heights

Fate of 4µm or Less Sized – (PM₄) Particles in the Lungs

Site C

Site E

Site G

Particle Size Distribution

Particle Size Analysis of the Dusts; ImageJ

Sample	# of Particles	Average Length	PM ₁₀	PM_4
	Analyzed	(µm)		
Α	520	4.7±4.6	88%	61%
С	421	3.4±4.6	92%	75%
E	418	4.0±4.8	89%	74%
G	380	3.9±3.3	94%	69%
St. Anthony	424	4.6±4.0	90%	57%

Specific Surface Area & U Percentage

Sample	7 Points N ₂ BET Surface Area (m ² /g)	%U (w/w)
St. Anthony Sediment	1.61±0.08	0.87
Site A	2.10±0.09	0.23
Site C	0.77±0.14	0.14
Site E	14.5±1.0	0.18
Site G	1.77±0.59	0.23

Batch-Reactor Dissolution Studies in Simulated Lung Fluids

Maintained at 37 °C, Inside a Dark Room

Simulated Lung Fluids (SLFs)

Composition (g·L ⁻¹)	Gamble ALF		
NaCl	6.779	3.21	
Na ₂ HPO ₄		0.071	
NaHCO ₃	2.268		
Trisodium citrate dihydrate	0.055	0.077	
NH ₄ Cl	0.535		
Glycine	0.375	0.059	
NaH ₂ PO ₄	1.872		
L-cysteine	0.121		
NaOH		6.0	
Citric acid		20.8	
CaCl ₂ ·2H ₂ O	0.026	0.128	
Na ₂ SO ₄		0.039	
MgCl ₂ ·6H ₂ O		0.05	
Disodium tartrate		0.09	
Sodium lactate		0.085	
Sodium pyruvate		0.172	
Properties			
рН	7.3 ± 0.1	4.5 ± 0.1	
Ionic strength (mol \cdot L ⁻¹)	0.17	0.34	

Dissolution of U from the Dusts

Mimics using ALF Intracellular Fluid in macrophages - (ICF) Plasma Blood Interstitial Fluid (IF) cells Mimics using Gambel's (GS)

Persistence with Seasons

Persistence with Seasons

Uranium from Sites C and E would become more mobilize

Interstitial Fluid (IF) Mimics using Gambel's (GS)

Single Uranium Mineral Study – PHREEQC 3.3.8.

Indicates that the bar continues

Mineralogy of Dusts

Dissolution of U is higher in GS

Site G

 \mathbf{N}

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 \mathbf{N}

--

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

--

--

 $\sqrt{}$

Fine dust pre-concentrated with U minerals

Simulating the Dust

Dissolved Uranium Species

Curcumin-TritonX Method thru Colorimetry & Fluorescence Quenching Confirms the Primary Dissolved Species is UO₂²⁺ IPPO LO.PM

Orange Coloration and Absorbance Maxima at 430 nm Indicates the Presence of UO_2^{2+}

Health Implications

- Uranium in the air-born dusts can be inhalable
- After inhalation, they become soluble in the lung fluids primarily producing UO₂²⁺
- Extent of dissolution is controlled by the mineralogy of dusts
- Carnotite, Autunite, Thyuyamunite and Uraninite likely to dissolve more in interstitial fluid
- Schoephite, Torbenite, Coffinite, Uranophane and Uranyl carbonates likely to dissolve more in alveolar macrophages
- non-uranium minerals such as calcite, kaolinite affects on the uranium dissolution
- The toxicological assessments on these mining lands should be site-specific rather than applied generally

Acknowledgement

- Gayan Rubasinghege, (Ph.D.), Department of Chemistry, New Mexico Tech, NM
- Daniel Cadol, (Ph.D.), Department of Hydrology, New Mexico Tech, NM
- Bonnie Frey, (MS), New Mexico Bureau of Geology, NM
- David Parkhurst, (MS), USGS & Andrew Luhmann, (Ph.D.), Department of Geology and Environmental Science, Wheaton Collage, IL
- Virgil Lueth, (Ph.D.), and Kelsey McNamara (MS), New Mexico Bureau of Geology
- **Thomas Kieft**, (Ph.D.), Department of Biology, New Mexico Tech
- Shaylene Paul, Alexandra Pearce, Marcus Silva, Maria Troyer, Andrew Chan, Nishanti Ellepola, Milton Das, Evelyn Byrd – NMT Students

Hettiarachchi, E.; Paul, S.; Cadol, D.; Frey, B.; Rubasinghege, G. Mineralogy Controlled Dissolution of Uranium from Airborne Dust in Simulated Lung Fluids (SLFs) and Possible Health Implications. *Enviro. Sci.* & Tech. Letters

