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The Gottesacker-Schwarzwassertal karst system (German-Austrian Alps) is a long-term study
site with complex hydrogeology (fig. 1). The primary karstifiable unit in the 35 km2 watershed
is the ~100-m-thick Schrattenkalk limestone, which is strongly folded and fractured. Karst
conduits drain the system into three major outlets: an estavelle (QE), the Aubach spring (QA),
and the Sagebach spring (QS)2. Over 25 years of pre-existing data are available for this site,
including geologic maps, tracer test data, cave maps, and results from previous modeling
efforts (which we use as our base model)3.
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Figure 4: Model tree 
Tree structure for the SKS portion of a mini model ensemble of only eight models. Each node represents a
conceptual choice, with the last node on each branch corresponding to one conduit model in the ensemble. The
ID string of each model records the series of choices that generated that particular model (listed in the table). A
randomly-chosen set of SWMM parameters are then assigned to each conduit model. The color of the endmost
nodes indicates how well that model’s spring discharge predictions fit the data.

Figure 2:  Modeling process
a.  One realization of  a 3D geologic block model of  the system, created in GemPy4. 
b. (i) One realization of  a conduit network, generated by the Stochastic Karst Simulator5. 

(ii) Heatmap of  fifty conduit network realizations (gray), compared to the network used in the base 
model of  the site3 (blue).
c. Fifty predictions of  spring discharge behavior (one per conduit network) with randomly-assigned flow 
parameters, returned by the Storm Water Management Model6.

Karst aquifers are difficult to model because flow through conduits, rather than pore spaces,
leads to high structural uncertainty1. Existing models rely either on detailed conduit maps, or
on averaged parameters approximating a porous medium. Neither approach is adequate for
most karst systems, where conduits are unmapped, yet flow patterns are fundamentally
different from those in porous media.
We are testing a new approach to modeling karst based on generating a large model
ensemble from minimal data, then adjusting the ensemble based on model
performance. This adjusted ensemble can then be used to project future behavior under
different conditions.

• Are conceptual modeling decisions fundamentally different than parameter value choices?
• Is the Monte Carlo tree search method the most appropriate/efficient way to search model

space?
• Currently, many models in the ensemble are not behavioral. What strategies could increase the

percentage of behavioral models?
• Precipitation inputs are calculated from only a few rain gages, but the strong elevation gradient

suggests that precipitation is highly spatially variable. How could precipitation be spatially
distributed?
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Figure 1: Site location
a. Location of the Gottesacker-Schwarzwassertal karst system, in the German-Austrian Alps.
b. Schematic diagram of the hydrogeology of the system: karst groundwater flows along the synclinal axes,
which drain into a deeper zone where flowpaths can cut across the folds before emerging at springs.

https://github.com/
cfandel/gottesacker

Find the code here:

To generate the initial model ensemble, we set aside almost all the available data and used only
basic geologic information: point locations of contacts between units, strike & dip points, and
the orientation of major fracture families.
We linked three existing modeling softwares with a custom Python script (available on
GitHub):

• GemPy4, for 3D geologic structure (fig. 2a);
• the Stochastic Karst Simulator5 (SKS), for conduit network evolution (fig. 2b);
• the Storm Water Management Model6 (SWMM), for flow through conduits (fig. 2c).

Each step required making conceptual assumptions and assigning parameter values, which
differed for each individual model in the ensemble. Each model can therefore be thought of
as a hypothesis of the system’s structure and parameters. We recorded the choices made for
each model, and visualized the relatedness of models with a tree structure (fig. 3).
We then compared model-predicted spring discharge to observed spring discharge and
calculated error metrics for each model.
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Next steps
The initial ensemble can be weighted to reflect the likelihood that each conduit network will
simulate observed spring discharge behavior.
We plan to weight the ensemble using a Monte Carlo Tree Search7, which balances exploring
model space with exploiting good-fit models. Each network in the initial ensemble is run once
with randomly-assigned SWMM flow parameters, and ranked by likelihood of reproducing
observed spring discharge. The probability of a conduit model being selected and run again with
a new set of random parameters is based on its initial likelihood. After each new run, the
likelihoods of the entire ensemble are updated. At the end of the tree search process, the
ensemble can be used to generate likelihood-weighted predictions of system behavior.

Choices Order Values to 
choose from

Allow branching 
conduits 1 yes, 

no

Fracture dataset 2 Goldscheider 2005,
Fandel 2019

Number of 
fracture families 3 2, 3, 4

Fracture 
dominance 
(frac K / matrix K)

3
1,      5,     10,
20,    40,    60,
70,    80,   100

Include allogenic 
flysch inflow 5 yes,  

no

*node size indicates choice ordering
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