
Final Paper # 126-7. Abstract # 332065

8. Case study: Sutlej river section, India7. Global reports

1. Background  

Opposite Shear Senses: a comprehensive review of
geneses, global occurrences, and a case study
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Fig. 2. Major brittle 
shear sense indicators
observed at different
scales. Reproduced
from (a,b,c,d,g,h) fig. 
1of , (i1,Doblas (1998)
i2,i3) fig. 4 of Samanta
et al. (2002), (i4) fig. 1

, (j) fig.Hippertt (1993)
3 of , fig. 6Tjia (1964)
of Twiss & Gefell
(1990), (l) fig. 1c of

, fig. 5.50Petit (1987)
of Passchier & Trouw
(2005). Shear sense:
sinistral (blue half-
arrows) except for (j)
for which the relative
sense of movement of
the blocks have been
denoted separately.

Fig. 1. Major ductile shear sense indicators observed at meso- and micro-scale. Reproduced from (a) fig. 5c of Goscombe 
et al. (2004) Grasemann et al. (2019) Driessche & Brun (1987) Passchier & Trouw , fig. 4c of , (d) fig. 2 of , (f) fig. 5.38 of 
(2005) Passchier & Trouw (2005) Trouw et al. (2010) Trouw et al. (2010), (h) fig. 5.21 of , (i) fig. 9.7.13 of , (j) fig. 9.5.2 of , 
(k) fig. 10a of , (l) fig. 12.2c of  (m) fig.10a of , (n,r) figs. Xypolias (2010) Mukherjee et al. (2015) Koehn & Passchier (2000)
9 & 11d of , (o) fig. 5.73 of , (p) fig. 8a of , (q) fig. 9.1 of Scharf et al. (2019) Vernon (2004) Fossen & Cavalcante (2017)

, (s) fig. 1 of . Shear sense: sinistral (blue half-arrows). Trouw et al. (2010) Grasemann et al. (2003)
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Fig. 3. Flowchart depicting the categorization of OSS based on deform-
ation regime and orientation of the primary shear planes.

9. Discussions & Conclusions
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OSS is present in many shear zones across the globe, especially at . 16 locations belong to Precam-orogenic belts
brian cratonic shields. However, proper cautions must be exercised in their identification to avoid misinterpretations. 

Multiply deformed terranes, which have undergone orthogonal switching of the principal stress axes (both local and/or
regional), are more likely to exhibit OSS. However, they are yet to be reported from the Zagros & the Andes.

Tectonic inversion, a major cause of producing OSS, of sedimentary basins play a crucial part in hydrocarbon
prospectivity. Hence, structural evolution of basins should be vigorously studied with special emphasis on
identification of OSS.

The equal abundance of OSS in the mylonitic sample from the Higher Himalayan Crystallines (HHC) suggests
dominance of coaxial deformation, which has been previously reported from different portions of the HHC.    

Fig. 4. Results of the two numerical experiments showing interaction betw-
een fracture propagation and the bedding interface of moderate strength.(a)
The fracture tip is ~ 3 cm away from the contact. Shear sense reversal at the
bed contact. (b) Both sliding and opening along the contact; shear sense
reversal due to step-over fractures. (c) Only sliding, fractures migrate across
the contact. Unlike (b), no shear reversal occurs. Reproduced from figs. 9 &
11e of .Cooke & Underwood (2001)
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(d,e,f) Type II. Shear reversal along the 
shear zone. After .Means (1990)
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Fig. 14. Global distribution of OSS
reported in the literature.

5. Single-stage deformation

4. Geneses
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Fig. 16. OSS observed under an optical
microscope from the schistose rock.
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Fig. 9. OSS in exhumed terranes. After,
Brueckner &Cuthbert (2013).
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Fig. 10. Inversion tectonics in a sedimentary basin. (a) Sequence of beds
after deposition.Two headed half-arrows indicate zones where evidenc-
 es of both contraction and
 extension can be found
 (b,c) negative, (d,e) positive. 
 After, .Tavarnelli (1999)
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Fig. 11. Shear sense reversal
along a vertical plane due to
isostatic rebound. Continued
extension and widening of
basin (a,b) creates negative
load, which compensates by
the topographic uplift of the
footwall rocks. Migration of
the uplifted zone in the dire-
ction of extension reverses
the shear sense (c,d).
After, Wernicke & Axen
(1988).
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6. Multi-stage deformation 

Passive

Passive

Active

(b)

Passive

Passive

Active

(a)

Passive

Active

Active

Passive

Active

Passive

(d)

Passive

Active

Active

Passive

Passive

Active

(e)

Opposite shear
strain

S
h

ea
r 

st
ra

in

Time

Passive

ActiveBulk
strain

0

+

-

1

2

3

(c)

(f)

3

2

2
1

S
h

ea
r 

st
ra

in

-

+

0
Time

Bulk
strain

Passive

Passive

Acti
ve

Active

Opposite shear
strain

Simple Shear General Shear Strain-Time path

A
q

u
eo

u
s 

fl
u

id
 a

b
se

n
t

A
q

u
eo

u
s 

fl
u

id
 p

re
se

n
t

Fig. 7. OSS in a multi-layered rock. 
(a-c) Anhydrous condition. Active layer
(quartz-rich) deforms more than passi-
ve (feldspar-rich) one. (d-f) Hydrous condition. Passive becomes active (e.g.
feldspar     muscovite) and vice-versa (quartz is stronger than muscovite).
OSS develop at domain boundaries in both. After, Hippertt & Tohver (1999).
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It is noticed that OSS in  are mostly results of either gravitational collapse (e.g. Nepal Himalaya,fold-thrust belts
North American Cordillera) or reorientation of principal stress axes (e.g. Apennines, Eastern Alps)
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